scholarly journals On the consistency of two-phase local/nonlocal piezoelectric integral model

2021 ◽  
Vol 42 (11) ◽  
pp. 1581-1598
Author(s):  
Yanming Ren ◽  
Hai Qing

AbstractIn this paper, we propose general strain- and stress-driven two-phase local/nonlocal piezoelectric integral models, which can distinguish the difference of nonlocal effects on the elastic and piezoelectric behaviors of nanostructures. The nonlocal piezoelectric model is transformed from integral to an equivalent differential form with four constitutive boundary conditions due to the difficulty in solving intergro-differential equations directly. The nonlocal piezoelectric integral models are used to model the static bending of the Euler-Bernoulli piezoelectric beam on the assumption that the nonlocal elastic and piezoelectric parameters are coincident with each other. The governing differential equations as well as constitutive and standard boundary conditions are deduced. It is found that purely strain- and stress-driven nonlocal piezoelectric integral models are ill-posed, because the total number of differential orders for governing equations is less than that of boundary conditions. Meanwhile, the traditional nonlocal piezoelectric differential model would lead to inconsistent bending response for Euler-Bernoulli piezoelectric beam under different boundary and loading conditions. Several nominal variables are introduced to normalize the governing equations and boundary conditions, and the general differential quadrature method (GDQM) is used to obtain the numerical solutions. The results from current models are validated against results in the literature. It is clearly established that a consistent softening and toughening effects can be obtained for static bending of the Euler-Bernoulli beam based on the general strain- and stress-driven local/nonlocal piezoelectric integral models, respectively.

2018 ◽  
Vol 24 (3) ◽  
pp. 559-572 ◽  
Author(s):  
Yuanbin Wang ◽  
Kai Huang ◽  
Xiaowu Zhu ◽  
Zhimei Lou

Eringen’s nonlocal differential model has been widely used in the literature to predict the size effect in nanostructures. However, this model often gives rise to paradoxes, such as the cantilever beam under end-point loading. Recent studies of the nonlocal integral models based on Euler–Bernoulli beam theory overcome the aforementioned inconsistency. In this paper, we carry out an analytical study of the bending problem based on Eringen’s two-phase nonlocal model and Timoshenko beam theory, which accounts for a better representation of the bending behavior of short, stubby nanobeams where the nonlocal effect and transverse shear deformation are significant. The governing equations are established by the principal of virtual work, which turns out to be a system of integro-differential equations. With the help of a reduction method, the complicated system is reduced to a system of differential equations with mixed boundary conditions. After some detailed calculations, exact analytical solutions are obtained explicitly for four types of boundary conditions. Asymptotic analysis of the exact solutions reveals clearly that the nonlocal parameter has the effect of increasing the deflections. In addition, as compared with nonlocal Euler–Bernoulli beam, the shear effect is evident, and an additional scale effect is captured, indicating the importance of applying higher-order beam theories in the analysis of nanostructures.


2021 ◽  
pp. 107754632110399
Author(s):  
Pei Zhang ◽  
Hai Qing

In this article, the well-posedness of several common nonlocal models for higher-order refined shear deformation beams is studied. Unlike the case of classic beams models, both strain-driven and stress-driven purely nonlocal theories lead to an ill-posed issue (i.e., there are excessive mandatory boundary conditions) when considering higher-order shear deformation assumption. As an effective remedy, the well-posedness of strain-driven and stress-driven two-phase nonlocal (StrainDTPN and StressDTPN) models is pertinently evidenced by studying the free vibration problem of nanobeams. The governing equations of motion and standard boundary conditions are derived from Hamilton’s principle. The integral constitutive relation is transformed equivalently to a differential form equipped with two constitutive boundary conditions. Using the generalized differential quadrature method (GDQM), the governing equations in terms of displacements are solved numerically. Numerical results show that both the StrainDTPN and StressDTPN models can predict consistent size-effects of beams with different boundary conditions.


2019 ◽  
Vol 55 (1-2) ◽  
pp. 42-52
Author(s):  
Milad Ranjbaran ◽  
Rahman Seifi

This article proposes a new method for the analysis of free vibration of a cracked isotropic plate with various boundary conditions based on Kirchhoff’s theory. The isotropic plate is assumed to have a part-through surface or internal crack. The crack is considered parallel to one of the plate edges. Existence of the crack modified the governing differential equations which were formulated based on the line-spring model. Generalized differential quadrature method discretizes the obtained governing differential equations and converts them into an algebraic system of equations. Then, an eigenvalue analysis was used to determine the natural frequencies of the cracked plates. Some numerical results are given to demonstrate the accuracy and convergence of the obtained results. To demonstrate the efficiency of the method, the results were compared with finite element solutions and available literature. Also, effects of the crack depth, its location along the thickness, the length of the crack and different boundary conditions on the natural frequencies were investigated.


2018 ◽  
Vol 10 (04) ◽  
pp. 1850041 ◽  
Author(s):  
Ye Tang ◽  
Tianzhi Yang

In the paper, a novel model of fluid-conveying nanotubes made of bi-directional functionally graded materials is presented for investigating the dynamic behaviors and stability. For the first time, the material properties of the nanotubes along both radical and axial directions are under consideration. Based on Euler–Bernoulli beam and Eringen’s nonlocal elasticity theories, the governing equation of the nanotubes and associated boundary conditions are developed using Hamilton’s principle. Differential quadrature method (DQM) is applied for discretizing the equation to determine the numerical solutions of the nanotubes with different boundary conditions. Numerical examples are presented to examine the effects of the material gradation, nonlocal parameter, and mode order on the dynamics and stability. It is shown that the two-directional materials distribution can significantly change the critical flow velocity, fundamental frequencies and stability. Comparing with traditional one-directional distribution, such 2D is more flexible to tune overall dynamic behaviors, this may provide new avenues for smart pipes.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Sadia Siddiqa ◽  
Naheed Begum ◽  
M. A. Hossain ◽  
Rama Subba Reddy Gorla

This paper reports the numerical results for the natural convection flow of a two-phase dusty nanofluid along a vertical wavy frustum of a cone. The general governing equations are transformed into parabolic partial differential equations, which are then solved numerically with the help of implicit finite difference method. Comprehensive flow formations of carrier and dusty phases are given with the aim to predict the behavior of heat and mass transport across the heated wavy frustum of a cone. The effectiveness of utilizing the nanofluids to control skin friction and heat and mass transport is analyzed. The results clearly show that the shape of the waviness changes when nanofluid is considered. It is shown that the modified diffusivity ratio parameter, NA, extensively promotes rate of mass transfer near the vicinity of the cone, whereas heat transfer rate reduces.


Author(s):  
Xu Liang ◽  
Zeng Cao ◽  
Yu Deng ◽  
Xue Jiang ◽  
Xing Zha ◽  
...  

This paper carries out the transient behaviors of a thin rectangular plate considering different boundary conditions, Pasternak foundation, and thermal environment simultaneously. The governing differential equations of the system are derived by employing the Kirchhoff’s classical plate theory and Hamilton’s principle. This paper proposes a novel semi-analytical methodology, which integrates Laplace transform, the one-dimensional differential quadrature method, Fourier series expansion technique, and Laplace numerical inversion to analyze plates’ transient response. The proposed method can obtain dynamic response of the rectangular efficiently and accurately, which fills the gap of transient behaviors in semi-analytical method. A comparison between semi-analytical results and numerical solutions from the publication on this subject is presented to verify the method. Specifically, the results also agree well with the data generated by the Navier’s method. The convergence tests indicate that the semi-analytical algorithm is a quick convergence method. The effects of various variables, such as geometry, boundary conditions, temperature, and the coefficients of the Pasternak foundation, are further studied. The parametric studies show that geometry and temperature change are significant factors that affect the dynamic response of the plate.


2013 ◽  
Vol 734 ◽  
pp. 424-455 ◽  
Author(s):  
Yasuko Takei ◽  
Richard F. Katz

AbstractIn partially molten regions of Earth, rock and magma coexist as a two-phase aggregate in which the solid grains of rock form a viscously deformable framework or matrix. Liquid magma resides within the permeable network of pores between grains. Deviatoric stress causes the distribution of contact area between solid grains to become anisotropic; in turn, this causes anisotropy of the matrix viscosity at the continuum scale. In this two-paper set, we predict the consequences of viscous anisotropy for flow of two-phase aggregates in three configurations: simple shear, Poiseuille, and torsional flow. Part 1 presents the governing equations and an analysis of their linearized form. Part 2 (Katz & Takei, J. Fluid Mech., vol. 734, 2013, pp. 456–485) presents numerical solutions of the full, nonlinear model. In our theory, the anisotropic viscosity tensor couples shear and volumetric components of the matrix stress/strain rate. This coupling, acting over a gradient in shear stress, causes segregation of liquid and solid. Liquid typically migrates toward higher shear stress, but under specific conditions, the opposite can occur. Furthermore, it is known that in a two-phase aggregate with a porosity-weakening viscosity, matrix shear causes porosity perturbations to grow into a banded or sheeted structure. We show that viscous anisotropy reduces the angle between these emergent high-porosity features and the shear plane. Laboratory experiments produce similar, high-porosity features. We hypothesize that the low angle of porosity bands in such experiments is the result of viscous anisotropy. We therefore predict that experiments incorporating a gradient in shear stress will develop sample-wide liquid–solid segregation due to viscous anisotropy.


1981 ◽  
Vol 48 (1) ◽  
pp. 109-112 ◽  
Author(s):  
J. G. Simmonds

The governing equations for plates that twist as they deform are reduced to 14 differential equations, first-order in a single space variable and second-order in time. Many of the equations are the same as for statics. Nevertheless, the extension to dynamics is nontrivial because the natural coordinates to use to describe the deformed, developable midsurface are not Lagrangian. The plate is assumed to have two curved, stress-free edges, one built-in straight edge, and one free straight edge acted upon by a force and a couple. There are 7 boundary conditions at the built-in end and 7 at the free end.


2018 ◽  
Vol 29 (11) ◽  
pp. 2344-2361 ◽  
Author(s):  
Mohammad Hassan Shojaeefard ◽  
Hamed Saeidi Googarchin ◽  
Mohammad Mahinzare ◽  
Morteza Adibi

This article investigates free vibration of a functionally graded piezomagnetic material cylindrical nanoshell embedded in viscoelastic media under rotational, external electric and magnetic loadings. The governing equations of the nanoshell are derived based on Eringen’s nonlocal theory. It is found that, magnetic and piezoelectric properties of the structure change exponentially along the thickness. The rotational loading is calculated considering initial hoop tension. The results are obtained by applying generalized differential quadrature method to the governing equations and associated boundary conditions. Results also include those achieved for clamped-clamped and simply hinged-hinged boundary conditions. It is found that free vibration characteristics of functionally graded piezomagnetic material cylindrical nanoshell are influenced by several factors including angular velocity, length scale parameter, external voltage, external amperage, functionally graded power index, and viscoelastic media parameters.


2012 ◽  
Vol 433-440 ◽  
pp. 4920-4924 ◽  
Author(s):  
Fatemeh Farhatnia ◽  
Mohammad Ali Bagheri ◽  
Amin Ghobadi

In this paper, buckling analysis of functionally graded (FG) thick beam under different conditions is presented. Based on the first order shear deformation theory, governing equations are obtained for Thimoshenko beam which is subjected to mechanical loads. In functionally graded materials (FGMs) the material properties obeying a simple power law is assumed to vary through thickness. In order to solve the buckling differential equations, Generalized Differential Quadrature Method (GDQM) is employed and thus a set of eigenvalue equations resulted. For solving this eigenvalue problem, a computer program was developed in a way that the influence of different parameters such as height to length ratio, various volume fraction functions and boundary conditions were included. Non-dimensional critical stress was calculated for simply-simply, clamped-simply and clamped-clamped supported beams. The results of GDQ method were compared with reported results from solving the Finite element too. The comparison showed the accuracy of obtained results clearly in this work.


Sign in / Sign up

Export Citation Format

Share Document