scholarly journals The thermal and Pasternak foundation effect on the transient behaviors of the rectangular plate using a novel semi-analytical method

Author(s):  
Xu Liang ◽  
Zeng Cao ◽  
Yu Deng ◽  
Xue Jiang ◽  
Xing Zha ◽  
...  

This paper carries out the transient behaviors of a thin rectangular plate considering different boundary conditions, Pasternak foundation, and thermal environment simultaneously. The governing differential equations of the system are derived by employing the Kirchhoff’s classical plate theory and Hamilton’s principle. This paper proposes a novel semi-analytical methodology, which integrates Laplace transform, the one-dimensional differential quadrature method, Fourier series expansion technique, and Laplace numerical inversion to analyze plates’ transient response. The proposed method can obtain dynamic response of the rectangular efficiently and accurately, which fills the gap of transient behaviors in semi-analytical method. A comparison between semi-analytical results and numerical solutions from the publication on this subject is presented to verify the method. Specifically, the results also agree well with the data generated by the Navier’s method. The convergence tests indicate that the semi-analytical algorithm is a quick convergence method. The effects of various variables, such as geometry, boundary conditions, temperature, and the coefficients of the Pasternak foundation, are further studied. The parametric studies show that geometry and temperature change are significant factors that affect the dynamic response of the plate.

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4084 ◽  
Author(s):  
Zeng Cao ◽  
Xu Liang ◽  
Yu Deng ◽  
Xing Zha ◽  
Ronghua Zhu ◽  
...  

The primary objective of this article is to present a semi-analytical algorithm for the transient behaviors of Functionally Graded Materials plates (FGM plates) considering both the influence of in-plane displacements and the influence of temperature changes. Based on the classical plate theory considering the effect of in-plane displacements, the equilibrium equations of the motion system are derived by Hamilton’s principle. Here, we propose a novel, accurate, and efficient semi-analytical method that incorporates the Fourier series expansion, the Laplace transforms, and its numerical inversion and the Differential Quadrature Method (DQM) to simulate the transient behaviors. This paper validates the proposed method by comparisons with semi-analytical natural frequency results and those from the literature. Expressly, the results of dynamic response also agree well with those generated by the Navier’s method and Finite Element Method (FEM). A convergence study that utilizes the different numbers of sampling points shows that the process can converge quickly, and a few sampling points can achieve high accuracy. The effects of various boundary conditions at the ends, material graded index, and temperature change are further investigated. From the detailed parametric study, it is seen that the peak displacement increases as the edge degrees of freedom, the gradient index of the material, and temperature change increase.


Author(s):  
Ehsan Arshid ◽  
Ali Kiani ◽  
Saeed Amir

The vibration analysis of an annular plate made up of functionally graded magneto-electro-elastic materials subjected to multi physical loads is presented. The plate is in thermal environment and temperature is distributed non-uniformly in its thickness direction. In addition, the plate is assumed moderately thick, the material properties vary through the thickness, and the exact neutral surface position is determined and took into account. According to Hamilton’s principle and the first-order shear deformation theory, the governing motion equations are extracted. Numerical results for various boundary conditions are obtained via the generalized differential quadrature method and are validated in simpler states with those of the literature. The effects of different parameters such as material property gradient index, multi physical loads, temperature variations, boundary conditions and geometric specifications of the plate on the natural frequencies and mode shapes are investigated. Temperature changes have little effect on the natural frequencies and the effect of electric potential on them is opposite of magnetic one. In other words, by increasing the magnetic potential, the rigidity of the plate increases too, and the frequency increases. The results of this study are useful to design more efficient sensors and actuators used in the smart or intelligent structures.


2018 ◽  
Vol 10 (04) ◽  
pp. 1850041 ◽  
Author(s):  
Ye Tang ◽  
Tianzhi Yang

In the paper, a novel model of fluid-conveying nanotubes made of bi-directional functionally graded materials is presented for investigating the dynamic behaviors and stability. For the first time, the material properties of the nanotubes along both radical and axial directions are under consideration. Based on Euler–Bernoulli beam and Eringen’s nonlocal elasticity theories, the governing equation of the nanotubes and associated boundary conditions are developed using Hamilton’s principle. Differential quadrature method (DQM) is applied for discretizing the equation to determine the numerical solutions of the nanotubes with different boundary conditions. Numerical examples are presented to examine the effects of the material gradation, nonlocal parameter, and mode order on the dynamics and stability. It is shown that the two-directional materials distribution can significantly change the critical flow velocity, fundamental frequencies and stability. Comparing with traditional one-directional distribution, such 2D is more flexible to tune overall dynamic behaviors, this may provide new avenues for smart pipes.


2016 ◽  
Vol 23 (19) ◽  
pp. 3247-3265 ◽  
Author(s):  
Majid Ghadiri ◽  
Navvab Shafiei

This study investigates the small-scale effect on the flapwise bending vibrations of a rotating nanoplate that can be the basis of nano-turbine design. The nanoplate is modeled as classical plate theory (CPT) with boundary conditions as the cantilever and propped cantilever. The axial forces are also included in the model as the true spatial variation due to the rotation. Hamilton’s principle is used to derive the governing equation and boundary conditions for the classic plate based on Eringen’s nonlocal elasticity theory and the differential quadrature method is employed to solve the governing equations. The effect of the small-scale parameter, nondimensional angular velocity, nondimensional hub radius, setting angle and different boundary conditions in the first four nondimensional frequencies is discussed. Due to considering rotating effects, results of this study are applicable in nanomachines such as nanomotors and nano-turbines and other nanostructures.


2018 ◽  
Vol 18 (10) ◽  
pp. 1850123 ◽  
Author(s):  
Hamed Safarpour ◽  
Kianoosh Mohammadi ◽  
Majid Ghadiri ◽  
Mohammad M. Barooti

This article investigates the flexural vibration of temperature-dependent and carbon nanotube-reinforced (CNTR) cylindrical shells made of functionally graded (FG) porous materials under various kinds of thermal loadings. The equivalent material properties of the cylindrical shell of concern are estimated using the rule of mixture. Both the cases of uniform distribution (UD) and FG distribution patterns of reinforcements are considered. Thermo-mechanical properties of the cylindrical shell are supposed to vary through the thickness and are estimated using the modified power-law rule, by which the porosities with even and uneven types are approximated. As the porosities occur inside the FG materials during the manufacturing process, it is necessary to consider their impact on the vibration behavior of shells. The present study is featured by consideration of different types of porosities in various CNT reinforcements under various boundary conditions in a single model. The governing equations and boundary conditions are developed using Hamilton's principle and solved by the generalized differential quadrature method. The accuracy of the present results is verified by comparison with existing ones and those by Navier's method. The results show that the length to radius ratio and temperature, as well as CNT reinforcement, porosity, thermal loading, and boundary conditions, play an important role on the natural frequency of the cylindrical shell of concern in thermal environment.


2021 ◽  
Vol 42 (11) ◽  
pp. 1581-1598
Author(s):  
Yanming Ren ◽  
Hai Qing

AbstractIn this paper, we propose general strain- and stress-driven two-phase local/nonlocal piezoelectric integral models, which can distinguish the difference of nonlocal effects on the elastic and piezoelectric behaviors of nanostructures. The nonlocal piezoelectric model is transformed from integral to an equivalent differential form with four constitutive boundary conditions due to the difficulty in solving intergro-differential equations directly. The nonlocal piezoelectric integral models are used to model the static bending of the Euler-Bernoulli piezoelectric beam on the assumption that the nonlocal elastic and piezoelectric parameters are coincident with each other. The governing differential equations as well as constitutive and standard boundary conditions are deduced. It is found that purely strain- and stress-driven nonlocal piezoelectric integral models are ill-posed, because the total number of differential orders for governing equations is less than that of boundary conditions. Meanwhile, the traditional nonlocal piezoelectric differential model would lead to inconsistent bending response for Euler-Bernoulli piezoelectric beam under different boundary and loading conditions. Several nominal variables are introduced to normalize the governing equations and boundary conditions, and the general differential quadrature method (GDQM) is used to obtain the numerical solutions. The results from current models are validated against results in the literature. It is clearly established that a consistent softening and toughening effects can be obtained for static bending of the Euler-Bernoulli beam based on the general strain- and stress-driven local/nonlocal piezoelectric integral models, respectively.


2020 ◽  
pp. 107754632093313 ◽  
Author(s):  
Sajjad Seifoori ◽  
Ahmad Mahdian Parrany ◽  
Sajjad Darvishinia

This article presents experimental studies on the dynamic response of a thin rectangular plate with clamped boundary conditions subjected to a moving mass. The designed experimental setup is described in detail, and the obtained experimental results are compared with theoretical solutions. In this regard, the governing motion equation of the thin rectangular plate excited by a moving mass is formulated based on the classical plate theory, and the eigenfunction expansion technique is used to solve the equation. Parametric studies are carried out to investigate the effect of some parameters, including the moving object mass and velocity, as well as the plate’s aspect ratio and thickness, on the dynamic response of the plate based on the time history of the plate’s central point deflection.


1952 ◽  
Vol 19 (3) ◽  
pp. 361-368
Author(s):  
H. J. Fletcher ◽  
C. J. Thorne

Abstract The deflection of a thin rectangular plate on an elastic foundation is given for the case in which two opposite edges have arbitrary but given deflections and moments. Six important cases of boundary conditions on the remaining two edges are treated. The solution is given for general transverse loads which are continuous in one direction and sectionally continuous in the other. By use of the sine transform the solution is obtained as a single trigonometric series. Numerical solutions are obtained for six special cases.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3401 ◽  
Author(s):  
Cui ◽  
Zhou ◽  
Ye ◽  
Gaidai ◽  
Li ◽  
...  

The three-dimensional vibration of a functionally graded sandwich rectangular plate on an elastic foundation with normal boundary conditions was analyzed using a semi-analytical method based on three-dimensional elasticity theory. The material properties of the sandwich plate varied with thickness according to the power law distribution. Two types of functionally graded material (FGM) sandwich plates were investigated in this paper: one with a homogeneous core and FGM facesheets, and another with homogeneous panels and an FGM core. Various displacements of the plates were created using an improved Fourier series consisting of a standard Fourier cosine series along with a certain number of closed-form auxiliary functions satisfying the essential boundary conditions. The vibration behavior of the FGM sandwich plate, including the natural frequencies and mode shapes, was obtained using the Ritz method. The effectiveness and accuracy of the suggested technique were fully verified by comparing the natural frequencies of sandwich plates with results from investigations of other functionally graded sandwich rectangular plates in the literature. A parametric study, including elastic parameters, foundation parameters, power law exponents, and layer thickness ratios, was performed, and some new results are presented.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Zhenyu Wang ◽  
Xu Liang ◽  
Guohua Liu

It is often in the interest of a designer to know the transient state of stress in a plate subjected to an underwater explosion. In this paper, an analytical method based on Taylor’s fluid-solid interaction (FSI) model, Mindlin plate theory, Laplace transform, and its inversion is proposed to examine the elastic dynamic response of a plate subjected to an underwater explosion. This analytical method includes shear deformation, the moments and membrane stress in the plate, and the FSI effect and considers a full profile of possibilities. The results of the response-time histories and the response distribution on the plate in terms of displacements and stresses from the analytical method are compared with finite element analysis (FEA) to validate this method, and the comparison indicates good agreement. Comparison of the acceleration at the center of an air-backed plate between the analytical method and the experiment from relevant literature, shows good agreements, and the analytical method and its FSI model are validated. The influence of the FSI is investigated in detail. All extreme values of the response-time histories decrease as the thickness increases for the non-FSI case. The results can be used as benchmark solutions in further research.


Sign in / Sign up

Export Citation Format

Share Document