scholarly journals Cluster-based Kriging approximation algorithms for complexity reduction

2019 ◽  
Vol 50 (3) ◽  
pp. 778-791 ◽  
Author(s):  
Bas van Stein ◽  
Hao Wang ◽  
Wojtek Kowalczyk ◽  
Michael Emmerich ◽  
Thomas Bäck

Abstract Kriging or Gaussian Process Regression is applied in many fields as a non-linear regression model as well as a surrogate model in the field of evolutionary computation. However, the computational and space complexity of Kriging, that is cubic and quadratic in the number of data points respectively, becomes a major bottleneck with more and more data available nowadays. In this paper, we propose a general methodology for the complexity reduction, called cluster Kriging, where the whole data set is partitioned into smaller clusters and multiple Kriging models are built on top of them. In addition, four Kriging approximation algorithms are proposed as candidate algorithms within the new framework. Each of these algorithms can be applied to much larger data sets while maintaining the advantages and power of Kriging. The proposed algorithms are explained in detail and compared empirically against a broad set of existing state-of-the-art Kriging approximation methods on a well-defined testing framework. According to the empirical study, the proposed algorithms consistently outperform the existing algorithms. Moreover, some practical suggestions are provided for using the proposed algorithms.

Author(s):  
A Salman Avestimehr ◽  
Seyed Mohammadreza Mousavi Kalan ◽  
Mahdi Soltanolkotabi

Abstract Dealing with the shear size and complexity of today’s massive data sets requires computational platforms that can analyze data in a parallelized and distributed fashion. A major bottleneck that arises in such modern distributed computing environments is that some of the worker nodes may run slow. These nodes a.k.a. stragglers can significantly slow down computation as the slowest node may dictate the overall computational time. A recent computational framework, called encoded optimization, creates redundancy in the data to mitigate the effect of stragglers. In this paper, we develop novel mathematical understanding for this framework demonstrating its effectiveness in much broader settings than was previously understood. We also analyze the convergence behavior of iterative encoded optimization algorithms, allowing us to characterize fundamental trade-offs between convergence rate, size of data set, accuracy, computational load (or data redundancy) and straggler toleration in this framework.


2018 ◽  
Vol 11 (2) ◽  
pp. 53-67
Author(s):  
Ajay Kumar ◽  
Shishir Kumar

Several initial center selection algorithms are proposed in the literature for numerical data, but the values of the categorical data are unordered so, these methods are not applicable to a categorical data set. This article investigates the initial center selection process for the categorical data and after that present a new support based initial center selection algorithm. The proposed algorithm measures the weight of unique data points of an attribute with the help of support and then integrates these weights along the rows, to get the support of every row. Further, a data object having the largest support is chosen as an initial center followed by finding other centers that are at the greatest distance from the initially selected center. The quality of the proposed algorithm is compared with the random initial center selection method, Cao's method, Wu method and the method introduced by Khan and Ahmad. Experimental analysis on real data sets shows the effectiveness of the proposed algorithm.


2021 ◽  
Vol 87 (6) ◽  
pp. 445-455
Author(s):  
Yi Ma ◽  
Zezhong Zheng ◽  
Yutang Ma ◽  
Mingcang Zhu ◽  
Ran Huang ◽  
...  

Many manifold learning algorithms conduct an eigen vector analysis on a data-similarity matrix with a size of N×N, where N is the number of data points. Thus, the memory complexity of the analysis is no less than O(N2). We pres- ent in this article an incremental manifold learning approach to handle large hyperspectral data sets for land use identification. In our method, the number of dimensions for the high-dimensional hyperspectral-image data set is obtained with the training data set. A local curvature varia- tion algorithm is utilized to sample a subset of data points as landmarks. Then a manifold skeleton is identified based on the landmarks. Our method is validated on three AVIRIS hyperspectral data sets, outperforming the comparison algorithms with a k–nearest-neighbor classifier and achieving the second best performance with support vector machine.


Fractals ◽  
2001 ◽  
Vol 09 (01) ◽  
pp. 105-128 ◽  
Author(s):  
TAYFUN BABADAGLI ◽  
KAYHAN DEVELI

This paper presents an evaluation of the methods applied to calculate the fractal dimension of fracture surfaces. Variogram (applicable to 1D self-affine sets) and power spectral density analyses (applicable to 2D self-affine sets) are selected to calculate the fractal dimension of synthetic 2D data sets generated using fractional Brownian motion (fBm). Then, the calculated values are compared with the actual fractal dimensions assigned in the generation of the synthetic surfaces. The main factor considered is the size of the 2D data set (number of data points). The critical sample size that yields the best agreement between the calculated and actual values is defined for each method. Limitations and the proper use of each method are clarified after an extensive analysis. The two methods are also applied to synthetically and naturally developed fracture surfaces of different types of rocks. The methods yield inconsistent fractal dimensions for natural fracture surfaces and the reasons of this are discussed. The anisotropic feature of fractal dimension that may lead to a correlation of fracturing mechanism and multifractality of the fracture surfaces is also addressed.


Author(s):  
Arvind Keprate ◽  
R. M. Chandima Ratnayake ◽  
Shankar Sankararaman

The main aim of this paper is to perform the validation of the adaptive Gaussian process regression model (AGPRM) developed by the authors for the Stress Intensity Factor (SIF) prediction of a crack propagating in topside piping. For validation purposes, the values of SIF obtained from experiments available in the literature are used. Sixty-six data points (consisting of L, a, c and SIF values obtained by experiments) are used to train the AGPRM, while four independent data sets are used for validation purposes. The experimental validation of the AGPRM also consists of the comparison of the prediction accuracy of AGPRM and Finite Element Method (FEM) relative to the experimentally derived SIF values. Four metrics, namely, Root Mean Square Error (RMSE), Average Absolute Error (AAE), Maximum Absolute Error (MAE), and Coefficient of Determination (R2), are used to compare the accuracy. A case study illustrating the development and experimental validation of the AGPRM is presented. Results indicate that the prediction accuracy of the AGPRM is comparable with and even higher than that of the FEM, provided the training points of the AGPRM are aptly chosen.


Author(s):  
UREERAT WATTANACHON ◽  
CHIDCHANOK LURSINSAP

Existing clustering algorithms, such as single-link clustering, k-means, CURE, and CSM are designed to find clusters based on predefined parameters specified by users. These algorithms may be unsuccessful if the choice of parameters is inappropriate with respect to the data set being clustered. Most of these algorithms work very well for compact and hyper-spherical clusters. In this paper, a new hybrid clustering algorithm called Self-Partition and Self-Merging (SPSM) is proposed. The SPSM algorithm partitions the input data set into several subclusters in the first phase and, then, removes the noisy data in the second phase. In the third phase, the normal subclusters are continuously merged to form the larger clusters based on the inter-cluster distance and intra-cluster distance criteria. From the experimental results, the SPSM algorithm is very efficient to handle the noisy data set, and to cluster the data sets of arbitrary shapes of different density. Several examples for color image show the versatility of the proposed method and compare with results described in the literature for the same images. The computational complexity of the SPSM algorithm is O(N2), where N is the number of data points.


Author(s):  
Md. Zakir Hossain ◽  
Md.Nasim Akhtar ◽  
R.B. Ahmad ◽  
Mostafijur Rahman

<span>Data mining is the process of finding structure of data from large data sets. With this process, the decision makers can make a particular decision for further development of the real-world problems. Several data clusteringtechniques are used in data mining for finding a specific pattern of data. The K-means method isone of the familiar clustering techniques for clustering large data sets.  The K-means clustering method partitions the data set based on the assumption that the number of clusters are fixed.The main problem of this method is that if the number of clusters is to be chosen small then there is a higher probability of adding dissimilar items into the same group. On the other hand, if the number of clusters is chosen to be high, then there is a higher chance of adding similar items in the different groups. In this paper, we address this issue by proposing a new K-Means clustering algorithm. The proposed method performs data clustering dynamically. The proposed method initially calculates a threshold value as a centroid of K-Means and based on this value the number of clusters are formed. At each iteration of K-Means, if the Euclidian distance between two points is less than or equal to the threshold value, then these two data points will be in the same group. Otherwise, the proposed method will create a new cluster with the dissimilar data point. The results show that the proposed method outperforms the original K-Means method.</span>


2020 ◽  
Vol 498 (3) ◽  
pp. 3440-3451
Author(s):  
Alan F Heavens ◽  
Elena Sellentin ◽  
Andrew H Jaffe

ABSTRACT Bringing a high-dimensional data set into science-ready shape is a formidable challenge that often necessitates data compression. Compression has accordingly become a key consideration for contemporary cosmology, affecting public data releases, and reanalyses searching for new physics. However, data compression optimized for a particular model can suppress signs of new physics, or even remove them altogether. We therefore provide a solution for exploring new physics during data compression. In particular, we store additional agnostic compressed data points, selected to enable precise constraints of non-standard physics at a later date. Our procedure is based on the maximal compression of the MOPED algorithm, which optimally filters the data with respect to a baseline model. We select additional filters, based on a generalized principal component analysis, which are carefully constructed to scout for new physics at high precision and speed. We refer to the augmented set of filters as MOPED-PC. They enable an analytic computation of Bayesian Evidence that may indicate the presence of new physics, and fast analytic estimates of best-fitting parameters when adopting a specific non-standard theory, without further expensive MCMC analysis. As there may be large numbers of non-standard theories, the speed of the method becomes essential. Should no new physics be found, then our approach preserves the precision of the standard parameters. As a result, we achieve very rapid and maximally precise constraints of standard and non-standard physics, with a technique that scales well to large dimensional data sets.


Author(s):  
Tushar ◽  
Tushar ◽  
Shibendu Shekhar Roy ◽  
Dilip Kumar Pratihar

Clustering is a potential tool of data mining. A clustering method analyzes the pattern of a data set and groups the data into several clusters based on the similarity among themselves. Clusters may be either crisp or fuzzy in nature. The present chapter deals with clustering of some data sets using Fuzzy C-Means (FCM) algorithm and Entropy-based Fuzzy Clustering (EFC) algorithm. In FCM algorithm, the nature and quality of clusters depend on the pre-defined number of clusters, level of cluster fuzziness and a threshold value utilized for obtaining the number of outliers (if any). On the other hand, the quality of clusters obtained by the EFC algorithm is dependent on a constant used to establish the relationship between the distance and similarity of two data points, a threshold value of similarity and another threshold value used for determining the number of outliers. The clusters should ideally be distinct and at the same time compact in nature. Moreover, the number of outliers should be as minimum as possible. Thus, the above problem may be posed as an optimization problem, which will be solved using a Genetic Algorithm (GA). The best set of multi-dimensional clusters will be mapped into 2-D for visualization using a Self-Organizing Map (SOM).


Author(s):  
Ping Li ◽  
Hua-Liang Wei ◽  
Stephen A. Billings ◽  
Michael A. Balikhin ◽  
Richard Boynton

A basic assumption on the data used for nonlinear dynamic model identification is that the data points are continuously collected in chronological order. However, there are situations in practice where this assumption does not hold and we end up with an identification problem from multiple data sets. The problem is addressed in this paper and a new cross-validation-based orthogonal search algorithm for NARMAX model identification from multiple data sets is proposed. The algorithm aims at identifying a single model from multiple data sets so as to extend the applicability of the standard method in the cases, such as the data sets for identification are obtained from multiple tests or a series of experiments, or the data set is discontinuous because of missing data points. The proposed method can also be viewed as a way to improve the performance of the standard orthogonal search method for model identification by making full use of all the available data segments in hand. Simulated and real data are used in this paper to illustrate the operation and to demonstrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document