scholarly journals The Use of Essential Oils from Thyme, Sage and Peppermint against Colletotrichum acutatum

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 114
Author(s):  
Armina Morkeliūnė ◽  
Neringa Rasiukevičiūtė ◽  
Lina Šernaitė ◽  
Alma Valiuškaitė

The Colletotrichum spp. is a significant strawberry pathogen causing yield losses of up to 50%. The most common method to control plant diseases is through the use of chemical fungicides. The findings of plants antimicrobial activities, low toxicity, and biodegradability of essential oils (EO), make them suitable for biological protection against fungal pathogens. The aim is to evaluate the inhibition of Colletotrichum acutatum by thyme, sage, and peppermint EO in vitro on detached strawberry leaves and determine EO chemical composition. Our results revealed that the dominant compound of thyme was thymol 41.35%, peppermint: menthone 44.56%, sage: α,β-thujone 34.45%, and camphor: 20.46%. Thyme EO inhibited C. acutatum completely above 200 μL L−1 concentration in vitro. Peppermint and sage EO reduced mycelial growth of C. acutatum. In addition, in vitro, results are promising for biological control. The detached strawberry leaves experiments showed that disease reduction 4 days after inoculation was 15.8% at 1000 μL L−1 of peppermint EO and 5.3% at 800 μL L−1 of thyme compared with control. Our findings could potentially help to manage C. acutatum; however, the detached strawberry leaves assay showed that EO efficacy was relatively low on tested concentrations and should be increased.

2018 ◽  
Vol 21 (7) ◽  
pp. 501-509 ◽  
Author(s):  
Miaofeng Ma ◽  
Jili Feng ◽  
Dezhi Wang ◽  
Shu-Wei Chen ◽  
Hui Xu

Aim and Objective: Plant diseases are caused by fungal pathogens lead to severe economic losses in many agriculture crops. And the increasing resistance of many fungi to commonly used antifungal agents necessitates the discovery and development of new fungicides. So this study was focused on synthesizing novel skeleton compounds to effectively control plant diseases. Materials and Methods: A series of drimane-amide derivatives were designed, synthesized by aminolysis reaction of amine with intermediate sclareolide which was prepared from sclareol. The structures of all the synthesized compounds were confirmed using 1H NMR, 13C NMR, and HRMS (ESI) spectroscopic data. Their in vitro antifungal activity were preliminarily evaluated by using the mycelium growth rate method against five phytopathogenic fungi: Botrytis cinerea, Glomerella cingulata, Alternaria alternate, Alternaria brassicae, and Fusarium graminearum. Results: 23 target compounds were successfully obtained in yields of 52-95%. Compounds A2 and A3 displayed favorable inhibitory potency against B. cinerea, G. cingulata and A. brassicae with IC50 values ranging from 3.18 to 10.48 µg/mL. These two compounds displayed higher fungicidal activity than sclareol against all the tested phytopathogenic fungi, and were more effective than the positive control thiabendazole against A. alternate and A. brassicae. The structure-activity relationship studies of compounds A1-10 indicated that both the position and type of substituent on the phenyl ring had significant effects on antifungal activity. Conclusion: The drimane-amide derivatives A2 and A3 were the most promising derivatives and should be selected as new templates for the potential antifungal agents.


BioControl ◽  
2021 ◽  
Author(s):  
Mudassir Iqbal ◽  
Maha Jamshaid ◽  
Muhammad Awais Zahid ◽  
Erik Andreasson ◽  
Ramesh R. Vetukuri ◽  
...  

AbstractUtilization of biocontrol agents is a sustainable approach to reduce plant diseases caused by fungal pathogens. In the present study, we tested the effect of the candidate biocontrol fungus Aureobasidium pullulans (De Bary) G. Armaud on strawberry under in vitro and in vivo conditions to control crown rot, root rot and grey mould caused by Phytophthora cactorum (Lebert and Cohn) and Botrytis cinerea Pers, respectively. A dual plate confrontation assay showed that mycelial growth of P. cactorum and B. cinerea was reduced by 33–48% when challenged by A. pullulans as compared with control treatments. Likewise, detached leaf and fruit assays showed that A. pullulans significantly reduced necrotic lesion size on leaves and disease severity on fruits caused by P. cactorum and B. cinerea. In addition, greenhouse experiments with whole plants revealed enhanced biocontrol efficacy against root rot and grey mould when treated with A. pullulans either in combination with the pathogen or pre-treated with A. pullulans followed by inoculation of the pathogens. Our results demonstrate that A. pullulans is an effective biocontrol agent to control strawberry diseases caused by fungal pathogens and can be an effective alternative to chemical-based fungicides.


2010 ◽  
Vol 25 (2) ◽  
pp. 151-156 ◽  
Author(s):  
Natasa Duduk ◽  
Aleksa Obradovic ◽  
Mirko Ivanovic

Effects of the volatile phase of thyme, cinnamon and clove essential oils on Colletotrichum acutatum were investigated. Mycelial disc was placed in the center of the Petri dish (V=66 ml) containing PDA. Different volumes of either non- or ethanol-diluted essential oils were placed on the inner side of the dish cover to obtain final concentrations of 153, 107, 76, 46, 15, 14, 12, 11, 7.6, 3.82, 1.53, 0.153 and 0.0153 ?l/L of air. The dishes were sealed with Parafilm and incubated in up-side-down position. After 7 days of incubation, mycelial growth was recorded by measuring the colony diameter. If no mycelial growth was recorded, the disc was transferred to a new PDA plate in order to evaluate whether the activity was either fungistatic or fungicidal. Mean growth values were obtained and then converted to inhibition percentage of mycelial growth compared with the control treatment. All the tested essential oils inhibited mycelial growth of C. acutatum in the dose dependent manner. Mycelial growth was totally inhibited by thyme oil in the concentration of 76 ?l/L of air. The same results were obtained by cinnamon and clove oil in the concentration of 107 ?l/L of air. Thyme and cinnamon oil had fungicidal effect in concentrations of 107 and 153 ?l/L respectively. The results obtained provide evidence on the antifungal in vitro effect of the tested essential oils as potential means for the control of C. acutatum.


2011 ◽  
Vol 6 (10) ◽  
pp. 1934578X1100601 ◽  
Author(s):  
Ismail Amri ◽  
Hamrouni Lamia ◽  
Samia Gargouri ◽  
Mohsen Hanana ◽  
Mariem Mahfoudhi ◽  
...  

Essential oils isolated from needles of Pinus patula by hydrodistillation were analyzed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography mass spectrometry (GC-MS). Thirty-eight compounds were identified, representing 98.3% of the total oil. The oil was rich in monoterpene hydrocarbons (62.4%), particularly α-pinene (35.2%) and β-phellandrene (19.5%). The in vitro antifungal assay showed that P. patula oil significantly inhibited the growth of 9 plant pathogenic fungi. The oil, when tested on Sinapis arvensis, Lolium rigidum, Phalaris canariensis and Trifolium campestre, completely inhibited seed germination and seedling growth of all species. Our preliminary results showed that P. patula essential oil could be valorized for the control of weeds and fungal plant diseases.


2009 ◽  
Vol 21 (4) ◽  
pp. 374-377 ◽  
Author(s):  
Hocine Laouer ◽  
Nacira Boulaacheb ◽  
Salah Akkal ◽  
Uwe J. Meierhenrich ◽  
Nicolas Baldovini ◽  
...  

Plant Disease ◽  
2016 ◽  
Vol 100 (12) ◽  
pp. 2434-2441 ◽  
Author(s):  
S. N. Chen ◽  
C. X. Luo ◽  
M. J. Hu ◽  
G. Schnabel

Few fungicides are effective against anthracnose, caused by Colletotrichum spp., and emerging resistance makes the search for chemical alternatives more relevant. Isolates of the Colletotrichum acutatum species complex were collected from South Carolina and Georgia peach orchards and phylogenetic analysis of the combined internal transcribed spacer region, glyceraldehyde-3-phosphate dehydrogenase, and β-tubulin gene sequences separated the isolates into C. nymphaeae and C. fioriniae. The sensitivity of these and three other previously reported Colletotrichum spp. from peach, including C. fructicola, C. siamense, and C. truncatum, to demethylation inhibitor (DMI) fungicides difenoconazole, propiconazole, tebuconazole, metconazole, flutriafol, and fenbuconazole was determined based upon mycelial growth inhibition. C. truncatum was resistant to tebuconazole, metconazole, flutriafol, and fenbuconazole and C. nymphaeae was resistant to flutriafol and fenbuconazole based on 50% effective concentration (EC50) values >100 μg/ml. C. fructicola and C. siamense were sensitive to all DMI fungicides (EC50 values of 0.2 to 13.1 μg/ml). C. fioriniae subgroup 2 isolates were less sensitive to DMI fungicides (EC50 values of 0.5 to 16.2 μg/ml) compared with C. fioriniae subgroup 1 (EC50 values of 0.03 to 2.1 μg/ml). Difenoconazole and propiconazole provided the best control efficacy in vitro to all five species, with EC50 values of 0.2 to 2.7 μg/ml. Tebuconazole and metconazole were effective against all Colletotrichum spp., except for C. truncatum. The strong in vitro activity of some DMI fungicides against Colletotrichum spp. may be exploited for improved anthracnose disease management of peach.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Awol Mekonnen ◽  
Berhanu Yitayew ◽  
Alemnesh Tesema ◽  
Solomon Taddese

In this study, thein vitroantimicrobial activities of four plant essential oils (T. schimperi,E. globulus,R. officinalis, andM. Chamomilla) were evaluated against bacteria and fungi. The studies were carried out using agar diffusion method for screening the most effective essential oils and agar dilution to determine minimum inhibitory concentration of the essential oils. Results of this study revealed that essential oils ofT. schimperi,E. globulus, andR. officinaliswere active against bacteria and some fungi. The antimicrobial effect ofM. chamomillawas found to be weaker and did not show any antimicrobial activity. The minimum inhibitory concentration values ofT. schimperiwere<15.75 mg/mL for most of the bacteria and fungi used in this study. The minimum inhibitory concentration values of the other essential oils were in the range of 15.75–36.33 mg/mL against tested bacteria. This study highlighted the antimicrobial activity of the essential oil ofE. globulus,M. chamomilla,T. Schimperi, andR. officinalis. The results indicated thatT. schimperihave shown strong antimicrobial activity which could be potential candidates for preparation of antimicrobial drug preparation.


2017 ◽  
Vol 17 (1) ◽  
pp. 31-35
Author(s):  
B Oyuntogtokh ◽  
M Byambasuren

At present, plant diseases caused by soil borne plant pathogens have major constraints on crop production. Which include genera Fusarium spp, Phytophtora spp, Sclerotinia and Altenaria. Due to this reason, chemical fungicides are routinely used to control plant disease, which is also true in Mongolian case. However, use of these chemicals has caused various problems including environmental pollution with consequence of toxicity to human health also resistance of some pathogens to these fungicides are present. Fortunately, an alternative method to reduce the effect of these plant pathogens is the use of antagonist microorganisms. Therefore, some species of the genus Bacillus are recognized as one of the most effective biological control agent.Our research was focused to isolate Bacillus licheniformis, with antifungal potential, from indigenous sources. In the current study, 28 bacterial cultures were isolated from soil and fermented mare’s milk also named as koumiss. Isolated bacterial cultures were identified according to simplified key for the tentative identification of typical strain of Bacillus species. As a result 8 strains were positive and further screened for antifungal activity against Fusarium spp and Alternaria solani. Out of these 8 strains 5 strains are selected based on their high effectiveness against fungal pathogens and for further confirmation Polymerase Chain reaction run for effective bacterial strains using specific primers B.Lich-f and B.Lich-r. 


2013 ◽  
Vol 76 (11) ◽  
pp. 1879-1886 ◽  
Author(s):  
WAFA ROUISSI ◽  
LUISA UGOLINI ◽  
CAMILLA MARTINI ◽  
LUCA LAZZERI ◽  
MARTA MARI

The fungicidal effects of secondary metabolites produced by a strain of Penicillium expansum (R82) in culture filtrate and in a double petri dish assay were tested against one isolate each of Botrytis cinerea, Colletotrichum acutatum, and Monilinia laxa and six isolates of P. expansum, revealing inhibitory activity against every pathogen tested. The characterization of volatile organic compounds released by the R82 strain was performed by solid-phase microextraction–gas chromatographic techniques, and several compounds were detected, one of them identified as phenethyl alcohol (PEA). Synthetic PEA, tested in vitro on fungal pathogens, showed strong inhibition at a concentration of 1,230 μg/ml of airspace, and mycelium appeared more sensitive than conidia; nevertheless, at the concentration naturally emitted by the fungus (0.726 ± 0.16 μg/ml), commercial PEA did not show any antifungal activity. Therefore, a combined effect between different volatile organic compounds produced collectively by R82 can be hypothesized. This aspect suggests further investigation into the possibility of exploiting R82 as a nonchemical alternative in the control of some plant pathogenic fungi.


Sign in / Sign up

Export Citation Format

Share Document