Down-Regulation of Pm4CL1 Gene Expression in E. coli Model by Antisense mRNA

2012 ◽  
Vol 50 (7-8) ◽  
pp. 529-537
Author(s):  
Ha Van Huan ◽  
Yong Wang ◽  
Siliang Zhang
2007 ◽  
Vol 35 (4) ◽  
pp. 575-578 ◽  
Author(s):  
Shilpakala Sainath Rao ◽  
H. S. Savithri ◽  
Malathi Raghunathan

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 286-286
Author(s):  
Kwangwook Kim ◽  
Sungbong Jang ◽  
Yanhong Liu

Abstract Our previous studies have shown that supplementation of low-dose antibiotic growth promoter (AGP) exacerbated growth performance and systemic inflammation of weaned pigs infected with pathogenic Escherichia coli (E. coli). The objective of this experiment, which is extension of our previous report, was to investigate the effect of low-dose AGP on gene expression in ileal mucosa of weaned pigs experimentally infected with F18 E. coli. Thirty-four pigs (6.88 ± 1.03 kg BW) were individually housed in disease containment rooms and randomly allotted to one of three treatments (9 to 13 pigs/treatment). The three dietary treatments were control diet (control), and 2 additional diets supplemented with 0.5 or 50 mg/kg of AGP (carbadox), respectively. The experiment lasted 18 d [7 d before and 11 d after first inoculation (d 0)]. The F18 E. coli inoculum was orally provided to all pigs with the dose of 1010 cfu/3 mL for 3 consecutive days. Total RNA [4 to 6 pigs/treatment on d 5; 5 to 7 pigs/treatment on 11 post-inoculation (PI)] was extracted from ileal mucosa to analyze gene expression profiles by Batch-Tag-Seq. The modulated differential gene expression were defined by 1.5-fold difference and a cutoff of P < 0.05 using limma-voom package. All processed data were statistically analyzed and evaluated by PANTHER classification system to determine the biological process function of genes in these lists. Compared to control, supplementation of recommended-dose AGP down-regulated genes related to inflammatory responses on d 5 and 11 PI; whereas, feeding low-dose AGP up-regulated genes associated with negative regulation of metabolic process on d 5, but down-regulated the genes related to immune responses on d 11 PI. The present observations support adverse effects of low-dose AGP in our previous study, indicated by exacerbated the detrimental effects of E. coli infection on pigs’ growth rate, diarrhea and systemic inflammation.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Simon J. Moore ◽  
Yonek B. Hleba ◽  
Sarah Bischoff ◽  
David Bell ◽  
Karen M. Polizzi ◽  
...  

Abstract Background  A key focus of synthetic biology is to develop microbial or cell-free based biobased routes to value-added chemicals such as fragrances. Originally, we developed the EcoFlex system, a Golden Gate toolkit, to study genes/pathways flexibly using Escherichia coli heterologous expression. In this current work, we sought to use EcoFlex to optimise a synthetic raspberry ketone biosynthetic pathway. Raspberry ketone is a high-value (~ £20,000 kg−1) fine chemical farmed from raspberry (Rubeus rubrum) fruit. Results  By applying a synthetic biology led design-build-test-learn cycle approach, we refactor the raspberry ketone pathway from a low level of productivity (0.2 mg/L), to achieve a 65-fold (12.9 mg/L) improvement in production. We perform this optimisation at the prototype level (using microtiter plate cultures) with E. coli DH10β, as a routine cloning host. The use of E. coli DH10β facilitates the Golden Gate cloning process for the screening of combinatorial libraries. In addition, we also newly establish a novel colour-based phenotypic screen to identify productive clones quickly from solid/liquid culture. Conclusions  Our findings provide a stable raspberry ketone pathway that relies upon a natural feedstock (L-tyrosine) and uses only constitutive promoters to control gene expression. In conclusion we demonstrate the capability of EcoFlex for fine-tuning a model fine chemical pathway and provide a range of newly characterised promoter tools gene expression in E. coli.


Author(s):  
Yifan Zhang ◽  
Weiwei Jiang ◽  
Jun Xu ◽  
Na Wu ◽  
Yang Wang ◽  
...  

ObjectiveThe gut microbiota is associated with nonalcoholic fatty liver disease (NAFLD). We isolated the Escherichia coli strain NF73-1 from the intestines of a NASH patient and then investigated its effect and underlying mechanism.Methods16S ribosomal RNA (16S rRNA) amplicon sequencing was used to detect bacterial profiles in healthy controls, NAFLD patients and NASH patients. Highly enriched E. coli strains were cultured and isolated from NASH patients. Whole-genome sequencing and comparative genomics were performed to investigate gene expression. Depending on the diet, male C57BL/6J mice were further grouped in normal diet (ND) and high-fat diet (HFD) groups. To avoid disturbing the bacterial microbiota, some of the ND and HFD mice were grouped as “bacteria-depleted” mice and treated with a cocktail of broad-spectrum antibiotic complex (ABX) from the 8th to 10th week. Then, E. coli NF73-1, the bacterial strain isolated from NASH patients, was administered transgastrically for 6 weeks to investigate its effect and mechanism in the pathogenic progression of NAFLD.ResultsThe relative abundance of Escherichia increased significantly in the mucosa of NAFLD patients, especially NASH patients. The results from whole-genome sequencing and comparative genomics showed a specific gene expression profile in E. coli strain NF73-1, which was isolated from the intestinal mucosa of NASH patients. E. coli NF73-1 accelerates NAFLD independently. Only in the HFD-NF73-1 and HFD-ABX-NF73-1 groups were EGFP-labeled E. coli NF73-1 detected in the liver and intestine. Subsequently, translocation of E. coli NF73-1 into the liver led to an increase in hepatic M1 macrophages via the TLR2/NLRP3 pathway. Hepatic M1 macrophages induced by E. coli NF73-1 activated mTOR-S6K1-SREBP-1/PPAR-α signaling, causing a metabolic switch from triglyceride oxidation toward triglyceride synthesis in NAFLD mice.ConclusionsE. coli NF73-1 is a critical trigger in the progression of NAFLD. E. coli NF73-1 might be a specific strain for NAFLD patients.


1999 ◽  
Vol 17 (6) ◽  
pp. 836-842 ◽  
Author(s):  
Paula M. Ragan ◽  
Alison M. Badger ◽  
Michael Cook ◽  
Vicki I. Chin ◽  
Maxine Gowen ◽  
...  

1998 ◽  
Vol 5 ◽  
pp. 122
Author(s):  
D.B. Thomason ◽  
J. Wong ◽  
L. Fu ◽  
E. Schneider ◽  
Z. Ku ◽  
...  

Aging Cell ◽  
2018 ◽  
Vol 18 (1) ◽  
pp. e12864 ◽  
Author(s):  
Hyo Jeong Kim ◽  
Yeonsoo Joe ◽  
Yingqing Chen ◽  
Gyu Hwan Park ◽  
Uh-Hyun Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document