Size-based microfluidic enrichment of neonatal rat cardiac cell populations

2006 ◽  
Vol 8 (3) ◽  
pp. 231-237 ◽  
Author(s):  
Shashi K. Murthy ◽  
Palaniappan Sethu ◽  
Gordana Vunjak-Novakovic ◽  
Mehmet Toner ◽  
Milica Radisic
2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Hidetoshi Masumoto ◽  
Tadashi Ikeda ◽  
Tatsuya Shimizu ◽  
Teruo Okano ◽  
Ryuzo Sakata ◽  
...  

BACKGROUNDS: To realize cardiac regeneration with human induced pluripotent stem cells (hiPSCs), efficient differentiation from hiPSCs to defined cardiac cell populations (cardiomyocytes [CMs]/ endothelial cells [ECs]/ vascular mural cells [MCs]), and transplantation technique for fair engraftment are required. Recently, we reported that mouse ES cell-derived cardiac tissue sheet transplantation to rat myocardial infarction (MI) model ameliorated cardiac function after MI (Stem Cells, in press). Here we tried to extend this technique to hiPSCs. METHODS & RESULTS: We have reported an efficient cardiomyocyte differentiation protocol based on a monolayer culture (PLoS One, 2011), in which cardiac troponin-T (cTnT)-positive CMs robustly appeared with 50-80% efficiency. In this study, we further modified the protocol to induce vascular cells (ECs/MCs) together with CMs by vascular endothelial cell growth factor supplementation, resulted in proportional differentiation of cTnT+-CMs (62.7±11.7% of total cells), VE-cadherin+-ECs (7.8±4.9%) and PDGFRb+-MCs (18.2±11.0%) at differentiation day 15 (n=12). Then, these cells were transferred onto temperature-responsive culture dishes (UpCell dishes; CellSeed, Tokyo, Japan) to form cardiac tissue sheets including defined cardiac populations. After 4 days of culture, we successfully collected self-pulsating cardiac tissue sheets with 7.0×10 5 ±2.3 (n=12) of cells consisted of CMs (46.9±15.9% of total cells), ECs (4.1±3.7%), and MCs (22.5±15.7%). Three-layered hiPSC-derived cardiac sheets were transplanted to a MI model of athymic rat heart one week after MI. In transplantation group, echocardiogram showed a significant improvement of systolic function of left ventricle (fractional shortening: 22.6±5.0 vs 36.5±8.0%, p<0.001, n=20) and a decrease in akinetic length (20.8±9.7 vs 2.5±7.7%, p<0.001, n=20) (pre-treatment vs 4weeks after transplantation). We also succeeded in generation of larger sheets (1.6 inch diameter) with the same method. CONCLUTIONS: Transplantation of hiPSC-derived cardiac tissue sheets significantly ameliorates cardiac dysfunction after MI. Thus, we developed a valuable technological basis for hiPSC-based cardiac cell therapy.


Glia ◽  
2020 ◽  
Author(s):  
Ruirui Zhang ◽  
Sailing Chen ◽  
Xinghui Wang ◽  
Xiaosong Gu ◽  
Sheng Yi

2009 ◽  
Vol 296 (5) ◽  
pp. H1694-H1704 ◽  
Author(s):  
Indroneal Banerjee ◽  
John W. Fuseler ◽  
Arti R. Intwala ◽  
Troy A. Baudino

Interleukin-6 (IL-6) is a pleiotropic cytokine responsible for many different processes including the regulation of cell growth, apoptosis, differentiation, and survival in various cell types and organs, including the heart. Recent studies have indicated that IL-6 is a critical component in the cell-cell communication between myocytes and cardiac fibroblasts. In this study, we examined the effects of IL-6 deficiency on the cardiac cell populations, cardiac function, and interactions between the cells of the heart, specifically cardiac fibroblasts and myocytes. To examine the effects of IL-6 loss on cardiac function, we used the IL-6 −/− mouse. IL-6 deficiency caused severe cardiac dilatation, increased accumulation of interstitial collagen, and altered expression of the adhesion protein periostin. In addition, flow cytometric analyses demonstrated dramatic alterations in the cardiac cell populations of IL-6 −/− mice compared with wild-type littermates. We observed a marked increase in the cardiac fibroblast population in IL-6 −/− mice, whereas a concomitant decrease was observed in the other cardiac cell populations examined. Moreover, we observed increased cell proliferation and apoptosis in the developing IL-6 −/− heart. Additionally, we observed a significant decrease in the capillary density of IL-6 −/− hearts. To elucidate the role of IL-6 in the interactions between cardiac fibroblasts and myocytes, we performed in vitro studies and demonstrated that IL-6 deficiency attenuated the activation of the STAT3 pathway and VEGF production. Taken together, these data demonstrate that a loss of IL-6 causes cardiac dysfunction by shifting the cardiac cell populations, altering the extracellular matrix, and disrupting critical cell-cell interactions.


2019 ◽  
Author(s):  
Megan M. Monsanto ◽  
Bingyan J. Wang ◽  
Zach R. Ehrenberg ◽  
Oscar Echeagaray ◽  
Kevin S. White ◽  
...  

AbstractBackgroundCellular therapy to treat heart failure is an ongoing focus of intense research and development, but progress has been frustratingly slow due to limitations of current approaches. Engineered augmentation of established cellular effectors overcomes impediments, enhancing reparative activity with improved outcomes relative to conventional techniques. Such ‘next generation’ implementation includes delivery of combinatorial cell populations exerting synergistic effects. Concurrent isolation and expansion of three distinct cardiac-derived interstitial cell types from human heart tissue, as previously reported by our group, prompted design of a three-dimensional (3D) structure that maximizes cellular interaction, allows for defined cell ratios, controls size, enables injectability, and minimizes cell losses upon delivery.MethodsThree distinct populations of human cardiac interstitial cells including mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), and c-Kit+ cardiac interstitial cells (cCICs) when cultured together spontaneously form scaffold-free 3D microenvironments termed CardioClusters. Biological consequences of CardioCluster formation were assessed by multiple assays including single cells RNA-Seq transcriptional profiling. Protective effects of CardioClusters in vitro were measured using cell culture models for oxidative stress and myocardial ischemia in combination with freshly isolated neonatal rat ventricular myocytes. Long-term impact of adoptively transferred CardioClusters upon myocardial structure and function in a xenogenic model of acute infarction using NODscid mice was assessed over a longitudinal time course of 20-weeks.ResultsCardioCluster design enables control over composite cell types, cell ratios, size, and preservation of structural integrity during delivery. Profound changes for biological properties of CardioClusters relative to constituent parental cell populations include enhanced expression of stem cell-relevant factors, adhesion/extracellular-matrix molecules, and cytokines. The CardioCluster 3D microenvironment maximizes cellular interaction while maintaining a more native transcriptome similar to endogenous cardiac cells. CardioCluster delivery improves cell retention following intramyocardial injection with preservation of long-term cardiac function relative to monolayer-cultured cells when tested in an experimental murine infarction model followed for up to 20 weeks post-challenge. CardioCluster-treated hearts show increases in capillary density, preservation of cardiomyocyte size, and reduced scar size indicative of blunting pathologic infarction injury.ConclusionsCardioClusters are a novel ‘next generation’ development and delivery approach for cellular therapeutics that potentiate beneficial activity and enhance protective effects of human cardiac interstitial cell mixed populations. CardioClusters utilization in this preclinical setting establishes fundamental methodologic and biologic insights, laying the framework for optimization of CardioCluster design to provide greater efficacy in cell-based therapeutic interventions intended to mitigate cardiomyopathic damage.


2017 ◽  
Author(s):  
Daniel A. Skelly ◽  
Galen T. Squiers ◽  
Micheal A. McLellan ◽  
Mohan T. Bolisetty ◽  
Paul Robson ◽  
...  

INTRODUCTORY PARAGRAPHCharacterization of the cardiac cellulome—the network of cells that form the heart—is essential for understanding cardiac development and normal organ function, and for formulating precise therapeutic strategies to combat heart disease. Recent studies have challenged assumptions about both the cellular composition1 and functional significance of the cardiac non-myocyte cell pool, with unexpected roles identified for resident fibroblasts2 and immune cell populations3,4. In this study, we characterized single-cell transcriptional profiles of the murine non-myocyte cardiac cellular landscape using single-cell RNA sequencing (scRNA-Seq). Detailed molecular analyses revealed the diversity of the cardiac cellulome and facilitated the development of novel techniques to isolate understudied cardiac cell populations such as mural cells and glia. Our analyses also revealed networks of intercellular communication as well as extensive sexual dimorphism in gene expression in the heart, most notably demonstrated by the upregulation of immune-sensing and pro-inflammatory genes in male cardiac macrophages. This study offers new insights into the structure and function of the mammalian cardiac cellulome and provides an important resource that will stimulate new studies in cardiac cell biology.


2021 ◽  
Author(s):  
Jennifer Dewing ◽  
Vinay Saunders ◽  
Ita O'Kelly ◽  
David Wilson

The human heart is primarily composed of cardiomyocytes, fibroblasts, endothelial and smooth muscle cells. Reliable identification of fetal cardiac cell types using protein markers is important for understanding cardiac development and delineating the cellular composition of the human heart during early development, which remains largely unknown. The aim of this study was to use immunohistochemistry (IHC), flow cytometry and RT-PCR analyses to investigate the expression and specificity of commonly used cardiac cell markers in the early human fetal heart (8-12 post-conception weeks). The expression of previously reported protein markers for the detection of cardiomyocytes (Myosin Heavy Chain (MHC) and Troponin I (cTnI)), fibroblasts (DDR2, Thy1, Vimentin), endothelial cells (CD31) and smooth muscle cells (α-SMA) were assessed. Flow cytometry revealed two distinct populations of cTnI expressing cells based on fluorescence intensity: cTnI High and cTnI Low . MHC positive cardiomyocytes were cTnI High , whereas MHC negative non-myocyte cells were cTnI Low . cTnI expression in non-myocytes was further confirmed by IHC and RT-PCR analyses, suggesting troponins are not cardiomyocyte-specific and may play distinct roles in non-muscle cells during early development. Vimentin was confirmed to be enriched in cultured fibroblast populations and flow cytometry revealed Vim High and Vim Low cell populations in the fetal heart. MHC positive cardiomyocytes were Vim Low whilst CD31 positive endothelial cells were Vim High . Based on the markers investigated, we estimate fetal human cardiomyocyte populations comprise 75-80% of total cardiac cells and exhibit the following marker profile: α-MHC + /cTnI High /Vim Low . For the non-cardiomyocyte population, we estimate they comprise 20-25% of total cardiac cells and exhibit the following marker profile: α-MHC - /cTnI Low /Vim High . Our study suggests the marker profiles and proportions of fetal cardiac populations are distinct from that of the adult heart.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Valerio Azzimato ◽  
Viviana Meraviglia ◽  
Claudia Colussi ◽  
Maria Cristina Florio ◽  
Alice Panariti ◽  
...  

Background: Communication among cardiomyocytes depends upon Gap Junction (GJ) protein expression and conductance. Previous studies demonstrated that electrical stimulation can induce GJ remodeling and evidences from neurons also indicate that electrical pacing modifies Lysine acetylase (KAT) and deacetylases (KDAC) activities. Objectives: Aim of the present work was to establish whether electrical stimulation modulates GJ-mediated cardiac cell-cell communication by acetylation dependent mechanisms. Methods and Results: Neonatal rat cardiomyocytes (NRCM; n=3) and in HL-1 atrial cells (n=20) were exposed to electrical field stimulation for 24 hours (Ionoptix C-Pace®; 0.5 Hz, 20 V, 0.5 msec pulses). Connexin 43 (Cx43) expression decreased almost 50% in NRCM and 40 % in HL-1; in contrast Cx40 and Cx45 expression was unchanged. Further, confocal microscopy revealed that electrical stimulation induced Cx43 accumulation in the cytoplasm of HL-1 cells. Electrical stimulation significatly down-regulated KDAC activity up to the 30% (n=3), whereas KAT activity was not modified; the net effect was a general increase of cell protein acetylation, confirmed by western blot analysis. Specifically, the pacing-dependent acetylation of Cx43 was proven by immunoprecipitation assay (n=5). Interestingly, our model mimicked the action of the KDAC pan-inhibitors TSA and SAHA on Cx43 expression and intracellular distribution, although we did not observe Cx43 mRNA significant reduction in electrically stimulated cells. In agreement, MG132 proteasome inhibitor (10 μM) restored Cx43 expression level. Finally, also the treatment of paced cells with the KAT inhibitor Anacardic Acid (0.5 μM) was able to rescue Cx43 level (n=4). Intriguingly, preliminary results also indicate lateralization and increased acetylation of Cx43 in the left ventricles of dogs with pacing-induced dilated cardiomyopathy (n=2). Conclusions: In vitro electrical stimulation of cardiac cells promotes Cx43 acetylation, which results in Cx43 down-modulation and intracellular relocalization. These findings suggest that electrical activity-dependent increase in acetylation may represent a novel mechanism for the regulation of cardiomyocyte communication.


1992 ◽  
Vol 70 (S1) ◽  
pp. S118-S129 ◽  
Author(s):  
John Edmond

During development different energy substrates are available to cells in brain in plentiful supply. The metabolic environment, which is dictated by the milk diet rich in fat, ensures that substrates in addition to glucose are available as fuels. Some substrates serve readily as primary fuels for respiration, whereas other substrates can serve other functions in addition to serving as primary fuels. Primary fuels for respiration serve to supply acetyl CoA directly and as a result always have first priority. With this criteria in mind, a consideration of substrate priority for respiration by developing brain is presented. Many studies in the decade, 1970–1980, in human infants and in the rat pup model show that both glucose and the ketone bodies, acetoacetate and D-(−)-3-hydroxybutyrate, are taken up by brain and used for energy production and as carbon sources for lipogenesis. Products of fat metabolism, free fatty acids, ketone bodies, and glycerol dominate metabolic pools in early development as a consequence of the milk diet. This recognition of a distinctive metabolic environment from the well-fed adult was taken into consideration within the last decade when methods became available to obtain and study each of the major cell populations, neurons, astrocytes, and oligodendrocytes in near homogeneous state in primary culture. Studies on these cells made it possible to examine the distinctive metabolic properties and capabilities of each cell population to oxidize the metabolites that are available in development. Studies by many investigators on these cell populations show that all three can use glucose and the ketone bodies in respiration and for lipogenesis. Only one cell type, the astrocytes, can β-oxidize fatty acids such as octanoate. By comparing the production of labeled carbon dioxide from glucose labeled on carbon-1 compared with carbon-6, it is clear that all three cell populations are capable of active hexose monophosphate shunt activity. Neurons and oligodendrocytes are capable of making good use of acetoacetate and D-(−)-3-hydroxybutyrate, whereas the best substrate for astrocytes is fatty acid. Under comparable conditions of incubation with astrocytes, fatty acids serve better than ketones, which in turn serve better than glucose in respiration. Some of the major factors that can explain the differing observations by different investigators on the capacity for substrate oxidation are presented. Over the last decade, astrocytes have captured the attention of neurobiologists because they have special attributes as metabolic support cells for the management of intermediary metabolism in brain. Evidence has been accumulating that astrocytes exhibit a versatility in their metabolic competency and are now regarded as metabolically multifunctional. Unlike neurons or oligodendrocytes, the astrocytes in culture exhibit metabolic versatility and substrate specialization in their management of carbohydrate and in the processing of fatty acids by β-oxidation, which also produces acetoacetate. In this regard astrocytes process substances important for other cells. Blood-borne ketone bodies are not mandatory substrates for growth and brain development of the infant rat. In addition, it is known that the developing brain is autonomous with respect to meeting its needs for major lipids such as cholesterol and palmitate, consequently a reliable substrate supply to support and fuel these needs is mandatory. Evidence is now available to support the conclusion that the developing brain can accommodate alternative substrates to meet its needs for respiration and cholesterogenesis. A metabolic adaptability is demonstrated in vivo when it is shown that increased glucose utilization compensates for the reduced availability of acetoacetate in a dietary induced hypoketonemic state in neonatal rat pups that are fed milk substitutes. This compensation is implemented without the precocious development of the key neural enzyme, pyruvate dehydrogenase, which would be expected to facilitate an increased flux of glucose-derived pyruvate for respiration and lipogenesis.Key words: developing brain, neural cells in primary culture, primary fuels, respiration, fatty acids, ketone bodies, glucose.


Sign in / Sign up

Export Citation Format

Share Document