On Kinematic Isolation in Stable Stratification: The CASES-99 Tower Observations

Author(s):  
Bruce B. Hicks
2009 ◽  
Vol 48 (8) ◽  
pp. 1627-1642 ◽  
Author(s):  
P. Baas ◽  
F. C. Bosveld ◽  
H. Klein Baltink ◽  
A. A. M. Holtslag

Abstract A climatology of nocturnal low-level jets (LLJs) is presented for the topographically flat measurement site at Cabauw, the Netherlands. LLJ characteristics are derived from a 7-yr half-hourly database of wind speed profiles, obtained from the 200-m mast and a wind profiler. Many LLJs at Cabauw originate from an inertial oscillation, which develops after sunset in a layer decoupled from the surface by stable stratification. The data are classified to different types of stable boundary layers by using the geostrophic wind speed and the isothermal net radiative cooling as classification parameters. For each of these classes, LLJ characteristics like frequency of occurrence, height above ground level, and the turning of the wind vector across the boundary layer are determined. It is found that LLJs occur in about 20% of the nights, are typically situated at 140–260 m above ground level, and have a speed of 6–10 m s−1. Development of a substantial LLJ is most likely to occur for moderate geostrophic forcing and a high radiative cooling. A comparison with the 40-yr ECMWF Re-Analysis (ERA-40) is added to illustrate how the results can be used to evaluate the performance of atmospheric models.


2015 ◽  
Vol 45 (8) ◽  
pp. 2048-2069 ◽  
Author(s):  
Elisabeth Schulz ◽  
Henk M. Schuttelaars ◽  
Ulf Gräwe ◽  
Hans Burchard

AbstractThe dependency of the estuarine circulation on the depth-to-width ratio of a periodically, weakly stratified tidal estuary is systematically investigated here for the first time. Currents, salinity, and other properties are simulated by means of the General Estuarine Transport Model (GETM) in cross-sectional slice mode, applying a symmetric Gaussian-shaped depth profile. The width is varied over four orders of magnitude. The individual along-channel circulation contributions from tidal straining, gravitation, advection, etc., are calculated and the impact of the depth-to-width ratio on their intensity is presented and elucidated. It is found that the estuarine circulation exhibits a distinct maximum in medium-wide channels (intermediate depth-to-width ratio depending on various parameters), which is caused by a maximum of the tidal straining contribution. This maximum is related to a strong tidal asymmetry of eddy viscosity and shear created by secondary strain-induced periodic stratification (2SIPS): in medium channels, transverse circulation generated by lateral density gradients due to laterally differential longitudinal advection induces stable stratification at the end of the flood phase, which is further increased during ebb by longitudinal straining (SIPS). Thus, eddy viscosity is low and shear is strong in the entire ebb phase. During flood, SIPS decreases the stratification so that eddy viscosity is high and shear is weak. The circulation resulting from this viscosity–shear correlation, the tidal straining circulation, is oriented like the classical, gravitational circulation, with riverine outflow at the surface and oceanic inflow close to the bottom. In medium channels, it is about 5 times as strong as in wide (quasi one-dimensional) channels, in which 2SIPS is negligible.


2013 ◽  
Vol 10 (4) ◽  
pp. 2725-2735 ◽  
Author(s):  
M. Blumenberg ◽  
C. Berndmeyer ◽  
M. Moros ◽  
M. Muschalla ◽  
O. Schmale ◽  
...  

Abstract. The Baltic Sea, one of the world's largest brackish-marine basins, established after deglaciation of Scandinavia about 17 000 to 15 000 yr ago. In the changeable history of the Baltic Sea, the initial freshwater system was connected to the North Sea about 8000 yr ago and the modern brackish-marine setting (Littorina Sea) was established. Today, a relatively stable stratification has developed in the water column of the deep basins due to salinity differences. Stratification is only occasionally interrupted by mixing events, and it controls nutrient availability and growth of specifically adapted microorganisms and algae. We studied bacteriohopanepolyols (BHPs), lipids of specific bacterial groups, in a sediment core from the central Baltic Sea (Gotland Deep) and found considerable differences between the distinct stages of the Baltic Sea's history. Some individual BHP structures indicate contributions from as yet unknown redoxcline-specific bacteria (bacteriohopanetetrol isomer), methanotrophic bacteria (35-aminobacteriohopanetetrol), cyanobacteria (bacteriohopanetetrol cyclitol ether isomer) and from soil bacteria (adenosylhopane) through allochthonous input after the Littorina transgression, whereas the origin of other BHPs in the core has still to be identified. Notably high BHP abundances were observed in the deposits of the brackish-marine Littorina phase, particularly in laminated sediment layers. Because these sediments record periods of stable water column stratification, bacteria specifically adapted to these conditions may account for the high portions of BHPs. An additional and/or accompanying source may be nitrogen-fixing (cyano)bacteria, which is indicated by a positive correlation of BHP abundances with Corg and δ15N.


Sign in / Sign up

Export Citation Format

Share Document