Improvement of thermal conductivity of composite film composed of cellulose nanofiber and nanodiamond by optimizing process parameters

Cellulose ◽  
2018 ◽  
Vol 25 (7) ◽  
pp. 3973-3983 ◽  
Author(s):  
Yuichi Tominaga ◽  
Kimiyasu Sato ◽  
Yuji Hotta ◽  
Hitoshi Shibuya ◽  
Mai Sugie ◽  
...  
2018 ◽  
Vol 6 (46) ◽  
pp. 12739-12745 ◽  
Author(s):  
Yapeng Chen ◽  
Xiao Hou ◽  
Ruiyang Kang ◽  
Yun Liang ◽  
Liangchao Guo ◽  
...  

A highly flexible cellulose nanofiber/graphene composite film with metal-like thermal conductivity and outstanding strength was fabricated via simple vacuum-assisted filtration.


Cellulose ◽  
2019 ◽  
Vol 26 (9) ◽  
pp. 5281-5289 ◽  
Author(s):  
Yuichi Tominaga ◽  
Kimiyasu Sato ◽  
Yuji Hotta ◽  
Hitoshi Shibuya ◽  
Mai Sugie ◽  
...  

2021 ◽  
pp. 095400832110003
Author(s):  
Ruiyi Li ◽  
Chengcheng Ding ◽  
Juan Yu ◽  
Xiaodong Wang ◽  
Pei Huang

In this article, the polyimide (PI) composite films with synergistically improving thermal conductivity were prepared by adding a few graphene nanoplatelets (GNP) and various hexagonal boron nitride (h-BN) contents into the PI matrix. The thermal conductivity of PI composite film with 1 wt% GNP and 30 wt% h-BN content was 1.21 W(m·k)− 1, which was higher than that of the PI composite film with 30 wt% h-BN content (0.45 W(m·k)− 1), the synergistic efficiency of GNP under various h-BN content (10 wt%, 20 wt%, and 30 wt%) were 1.70, 2.71, and 3.09, respectively. And it was found that the increased h-BN content can suppress the dielectric properties caused by GNP in the matrix. The dielectric permittivity and dielectric loss tangent of 1 wt% GNP/PI composite film were 10.69, 0.661 at 103 Hz, respectively, and that of the 30 wt% h-BN + GNP/PI composite film were 4.29 and 0.1367, respectively. Moreover, the mechanical properties of the PI composite film were suitable for practical applications. And the heat resistance index and the residual rate at 700°C of PI composite film increased to 326.8°C, 74.43%, respectively, and these of PI film were 292.6°C and 59.26%. Thus, it may provide a reference value for applying the filler hybridization/PI film in the electronic packaging materials.


2014 ◽  
Vol 15 (2) ◽  
pp. 215-219 ◽  
Author(s):  
Se Youn Cho ◽  
Min Eui Lee ◽  
Youngeun Choi ◽  
Hyoung-Joon Jin

Author(s):  
Y. Tan ◽  
A. Sharma ◽  
J. P. Longtin ◽  
S. Sampath ◽  
H. Wang

Thermal spray coatings are used extensively for protection of engineering components and structures in a variety of applications. Due to the nature of thermal spraying process, the coating thermal, mechanical, and electrical properties depend strongly on the coating microstructure, which consists of many individual splats, interfaces between the splats, defects and voids. The coating microstructure, in turn, is determined by the thermal spray process parameters. In order to relate coating process parameters to the final coating performance, then, it is desirable to relate coating microstructure to coating properties. In this work, thermal conductivity is used as the physical parameter of interest. Thermal conductivity of thermal spray coatings is studied by using an image analysis-based approach of typical coating cross sections. Three coating systems, yttria stabilized zirconia (YSZ), molybdenum, and Ni-5wt.%Al are explored in this work. For each material, thermal conductivity is simulated by using a microstructure image-based finite element analysis model. The model is then applied to high temperature conditions (up to 1200 °C) with a hot stage-equipped scanning electron microscope imaging technique to assess thermal conductivity at high temperatures. The coating thermal conductivity of metallic coatings is also experimentally measured by using a high-temperature laser flash technique.


2011 ◽  
Vol 284-286 ◽  
pp. 620-623
Author(s):  
Ming Hu ◽  
Jing Gao ◽  
Yun Long Zhang

The SiC/Cu electronic packaging composites with excellent performance were successfully prepared by the chemical plating copper on the surface of SiC powders and high-speed flame spraying technology. The results showed that the homogeneous dense coated layers can be obtained on the surface of SiC powder by optimizing process parameters. The volume fraction of SiC powders in the composites could significantly increase and figure was beyond 55vol% after spraying Copper. The SiC and Cu were the main phases in the spraying SiC/Cu electronic packaging composite, at the same time Cu2O can be tested as the trace phase. The interface combination properties of SiC/Cu in the hot-pressed samples can obviously improve. The thermal expansion coefficient and thermal conductivity of SiC/Cu electronic packaging composite basic can satisfy the requirements for electronic packaging materials.


Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 456 ◽  
Author(s):  
Sazzad H. Ahmed ◽  
Ahsan Mian

Selective Laser Melting (SLM) is a popular additive manufacturing (AM) method where a laser beam selectively melts powder layer by layer based on the building geometry. The melt pool peak temperature during build process is an important parameter to determine build quality of a fabricated component by SLM process. The melt pool temperature depends on process parameters including laser power, scanning speed, and hatch space as well as the properties of the build material. In this paper, the sensitivity of melt pool peak temperature during the build process to temperature dependent material properties including density, specific heat, and thermal conductivity are investigated for a range of laser powers and laser scanning speeds. It is observed that the melt pool temperature is most sensitive to melt pool thermal conductivity of the processed material for a set of specific process parameters (e.g., laser power and scan speed). Variations in the other mechanical–physical properties of powder and melt pool such as density and specific heat are found to have minimal effect on melt pool temperature.


RSC Advances ◽  
2020 ◽  
Vol 10 (69) ◽  
pp. 42584-42595
Author(s):  
Dongxu Liu ◽  
Chuanguo Ma ◽  
Hongtao Chi ◽  
Shihui Li ◽  
Ping Zhang ◽  
...  

A strategy of electrostatic self-assembly and two-step synergism was proposed to significantly improve the thermal conductivity of the PI composite film.


Sign in / Sign up

Export Citation Format

Share Document