The Research of Spraying SiC/Cu Electronic Packaging Composites

2011 ◽  
Vol 284-286 ◽  
pp. 620-623
Author(s):  
Ming Hu ◽  
Jing Gao ◽  
Yun Long Zhang

The SiC/Cu electronic packaging composites with excellent performance were successfully prepared by the chemical plating copper on the surface of SiC powders and high-speed flame spraying technology. The results showed that the homogeneous dense coated layers can be obtained on the surface of SiC powder by optimizing process parameters. The volume fraction of SiC powders in the composites could significantly increase and figure was beyond 55vol% after spraying Copper. The SiC and Cu were the main phases in the spraying SiC/Cu electronic packaging composite, at the same time Cu2O can be tested as the trace phase. The interface combination properties of SiC/Cu in the hot-pressed samples can obviously improve. The thermal expansion coefficient and thermal conductivity of SiC/Cu electronic packaging composite basic can satisfy the requirements for electronic packaging materials.

1993 ◽  
Vol 323 ◽  
Author(s):  
Shy-Wen Lai ◽  
D. D. L. Chung

AbstractAluminum-matrix composites containing AIN or SiC particles were fabricated by vacuum infiltration of liquid aluminum into a porous particulate preform under an argon pressure of up to 41 MPa. Al/AIN was superior to Al/SiC in thermal conductivity. At 59 vol.% AIN, Al/AlN had a thermal conductivity of 157 W/m. °C and a thermal expansion coefficient of 9.8 × 10−-6°C−1 (35–100 °C). Al/AlN had similar tensile strength and higher ductility compared to Al/SiC of a similar reinforcement volume fraction at room temperature, but exhibited higher tensile strength and higher ductility at 300–400°C. The ductility of Al/AlN increased with increasing temperature from 22 to 400°C, while that of Al/SiC did not change with temperature. The superior high temperature resistance of Al/AlN is attributed to the lack of a reaction between Al and AIN, in contrast to the reaction between Al and SiC in AI/SiC.


2003 ◽  
Vol 18 (4) ◽  
pp. 855-860 ◽  
Author(s):  
Gary L. Eesley ◽  
Alaa Elmoursi ◽  
Nilesh Patel

Kinetic spray deposition provides a new means for producing composite materials with tailored physical properties. We report on measurements of the thermal conductivity and thermal-expansion coefficient for several compositional variations of kinetically sprayed Al–SiC metal-matrix composites. As a result of the deposition process, inclusion of SiC particles saturates in the 30–40% volume fraction range.


Soft Matter ◽  
2018 ◽  
Vol 14 (20) ◽  
pp. 4204-4212 ◽  
Author(s):  
Deul Kim ◽  
Artavazd Kirakosyan ◽  
Jae Woong Lee ◽  
Jong-Ryul Jeong ◽  
Jihoon Choi

Flexible and robust h-BN foam sheets with a three-dimensional network structure exhibit a much enhanced thermal conductivity as well as thermo-stability at high temperature.


Author(s):  
S. Sohail Akhtar ◽  
A. F. M. Arif ◽  
M. U. Siddiqui ◽  
Kabeer Raza ◽  
L. Taiwo Kareem ◽  
...  

Computational design for property management of composite materials offers a cost sensitive alternate approach in order to understand the mechanisms involved in the thermal and structural behavior of material under various combinations of inclusions and matrix material. The present study is concerned with analyzing the elasto-plastic and thermal behavior of Al2O3-Ni droplet composites using a mean field homogenization and effective medium approximation (EMA) using an in-house code. Our material design approach relies on a method for predicting potential optimum thermal and structural properties for Al2O3-Ni composites by considering the effect of inclusion orientation, volume, size, thermal interface resistance, percolation and porosity. The primary goal for designing such alumina-based composites is to have enhanced thermal conductivity for effective heat dissipation and spreading capabilities. At the same time, other functional properties like thermal expansion coefficient, elastic modulus, and electrical resistivity have to be maintained or enhanced. The optimum volume fraction was found to occur between 15 and 20 vol. %Ni while the average nickel particle size of 5 μm was found a minimum size that will enhance the thermal conductivity. The Young’s modulus was found decreasing as the volume fraction of nickel increases, which would result in enhanced fracture toughness. Electrical conductivity was found to be greatly affected by the percolation phenomenon in the designed range of volume fraction minimum particle size. As a validation, Al2O3 composites with 10% and 15% volume fraction Ni and droplet size of 18 μm are developed using spark Plasma Sintering process. Thermal conductivity and thermal expansion coefficient of the samples are measured to complement the computational design. Microstructural analysis of the sintered samples was also studied using optical microscope to study the morphology of the developed samples. It was found that the present computational design tool was accurate enough in predicting the desired properties of Al2O3-Ni composites.


2012 ◽  
Vol 490-495 ◽  
pp. 3816-3821 ◽  
Author(s):  
Xiao Gang Wang ◽  
Huai Yan Ren ◽  
Ming Zhu ◽  
Li Rong Deng ◽  
Shu He Lu

The β-SiCp/Al electronic packaging composites with excellent performance were successfully fabricated by pressureless infiltration technology in air.The effects of alloying elements, infiltration temperature and time on infiltration process and application of -SiC were studied.The results show that by adding appropriate magnesium to aluminum matrix, a interface reaction between oxide films of SiC and magnesium occurs, and the interface reaction product MgAl2O4 is generated, the interface wettability of Al and SiC and pressureless infiltration are improved.The interface harmful phase Al4C3 can be inhibited by adding silicon to aluminum matrix.Identified 850°C for the best infiltration temperature, and the thickness with infiltration time and larger, infiltration rate is about 10mm/hour.Under the same parameter conditions, the thermal properties of β-SiCp/Al electronic packaging material are 4 ~ 6% higher than that of ɑ-SiCp/Al. The β-SiCp/Al electronic packaging materials with 66% SiC volume ratio has lower coefficiency of thermal expansion than those ɑ-SiCp/Al electronic packaging materials.And the thermal expansion coefficient and thermal conductivity of β-SiCp/Al electronic material can satisfy the requirements for electronic packaging materials.


2010 ◽  
Vol 654-656 ◽  
pp. 2724-2727 ◽  
Author(s):  
Shinji Kato ◽  
Makoto Kobashi ◽  
Naoyuki Kanetake

Recently, industrial technology for both improving thermal conductivity and controlling the coefficient of thermal expansion of heat sink materials has became an important issuebecause of the downsizing of electronic devices. We have been investigating the innovative processing method for TiB2 dispersed Cu matrix composite by reactive infiltration process in which the combustion reaction of elemental powders (Ti+2B+Cu → TiB2+Cu) and pressureless infiltration of molten Cu into porous reaction product (TiB2/Cu composite) are combined. By this process, fine TiB2particles (2~3µm) can be dispersed in Cu matrix homogeneously. However, for better thermal conductivity and reduced thermal expansion, 3-dimentionally continuous inter-penetrating structure of TiB2 and Cu phases is suitable. In this study, we researched the effects of Cu powder size and volume fraction in Ti,B,Cu green powder compact on the microstructure of the combustion synthesized TiB2/Cu composite. When Cu powders were smaller than 45µm, TiB2 particles were uniformly dispersed in Cu matrix. However, when Cu powders were larger than 150µm, monolithic Cu area without TiB2 dispersion was formed. The monolithic Cu area tended to be connected each other by increasing the amount of Cu powders. This resulted in the formation of 3-dimensionally continuous inter-penetrating TiB2/Cu microstructure.


2012 ◽  
Vol 482-484 ◽  
pp. 1410-1413 ◽  
Author(s):  
Zhen Hui Ma ◽  
Jin Liang Huang ◽  
Yong Jun Gu ◽  
Biao Jin ◽  
Guan Yu Chen

AlN/epoxy (AlN/EP) composites were fabricated by casting method. The effects of the AlN content on microstructure, thermal conductivity and thermal expansion properties of composites were investigated. The results indicate that with the AlN content increasing, the thermal conductivity increase, while the coefficient of thermal expansion (CTE) decreases. When the volume fraction of AlN is 25%, the thermal conductivity is 0.507 W/m•K, which is about 2.5 times higher than that of the epoxy matrix, while the coefficient of thermal expansion is 53.7 ppm/°C. The thermal conductivity results obtained were also analyzed using the Maxwell-Eucken model to explain the effect of AlN fillers on the formation of thermal conductive networks.


2008 ◽  
Vol 571-572 ◽  
pp. 413-418 ◽  
Author(s):  
Michael Schöbel ◽  
Guillermo C. Requena ◽  
Heinz Kaminski ◽  
Hans Peter Degischer ◽  
Thomas Buslaps ◽  
...  

AlSi7Mg/SiC/70p (AlSiC) is used for heat sinks because of its good thermal conductivity combined with a low coefficient of thermal expansion (CTE). These properties are important for power electronic devices where heat sinks have to provide efficient heat transfer to a cooling device. A low CTE is essential for a good surface bonding of the heat sink material to the insulating ceramics. Otherwise mismatch in thermal expansion would lead to damage of the bonding degrading the thermal contact within the electronic package. Therefore AlSiC replaces increasingly copper heat sinks. The CTE mismatch between insulation and a conventional metallic heat sink is transferred into the MMC heat sink. The stability of the interface bonding within a MMC is critical for its thermal properties. In situ thermal cycling measurements of an AlSi7Mg/SiC/70p MMC are reported yielding the void volume fraction and internal stresses between the matrix and the reinforcements in function of temperature. The changes in void volume fractions are determined simultaneously by synchrotron tomography and residual stresses by synchrotron diffraction at ESRF-ID-15. The measurements show a relationship between thermal expansion, residual stresses and void formation in the MMC. The results obtained from the in situ measurements reveal a thermoelastic range up to 200 °C followed by plastic matrix deformation reducing the volume of voids during heating. A reverse process takes place during cooling. Thus the CTE becomes smaller than according to thermoelastic calculations. Damage could be observed after multiple heating cycles, which increase the volume fraction and the size of the voids. The consequence is local debonding of the matrix from the reinforcement particles, which leads to an irreversible reduction of the thermal conductivity after multiple heating cycles.


Author(s):  
Preetkanwal Singh Bains ◽  
H. S. Payal ◽  
Sarabjeet Singh Sidhu

The present study investigates the thermal conductivity and coefficient of thermal expansion of bimodal SiCp reinforced Aluminum matrix composites formed via powder metallurgy method. The after-effects of proportion of particulate reinforcement as size distribution and sintering parameters on the thermal properties have been explored. The Box-Behnken design for response surface methodology was adopted to recognize the significance of chosen variables on the thermal conductivity and coefficient of thermal expansion of the composite. It is witnessed that the thermal conductivity and coefficient of thermal expansion enhanced due to increase in fine SiC particulates volume fraction. It has been exhibited that the fine SiC particulates (37μm) doped Al-matrix occupied interstitial positions and developed continuous SiC-matrix network. SEMs were conducted to evaluate the microstructure architecture for MMCs.


Sign in / Sign up

Export Citation Format

Share Document