Modified Lyocell process to improve dissolution of cellulosic pulp and pulp blends in NMMO solvent

Cellulose ◽  
2020 ◽  
Author(s):  
Sachin Jadhav ◽  
Ashwini Lidhure ◽  
Shirish Thakre ◽  
Vivek Ganvir
Keyword(s):  
BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 9243-9264
Author(s):  
Luis Fernando Pintor-Ibarra ◽  
José de Jesús Rivera-Prado ◽  
Sarai Ramos-Vargas ◽  
Teófilo Escoto-García ◽  
Nancy Eloisa Rodríguez-Olalde ◽  
...  

Eichhornia crassipes (water hyacinth) was pulped by means of a kraft pulping process with reagent loads of 10 and 20% on a dry matter basis to determine yield, rejects, kappa number, and ash. Fiber classification, brightness, opacity, and viscosity were measured in the brown pulp. Bleaching was performed by means of an O1O2D1(PO)D2HD3 sequence. Yield, kappa number, pH, ash, brightness, opacity, and viscosity were evaluated in the bleached pulp. Finally, a microanalysis of inorganic elements was carried out in both the bleached and unbleached pulp ash. The highest kraft pulp yield was 26.4%, with a 10% reagent load at 120 °C and 30 minutes cooking. It was determined that E. crassipes cellulosic pulp contains large amounts of fines. Results of the bleaching sequence indicate low brightness (58.0 %) and low viscosity (6.43 cP). The most abundant inorganic elements in the ash of both bleached and unbleached pulp were Ca, Mg, P, and Si. These results suggest that E. crassipes biomass might complement cellulosic fibers in pulping processes of low yield, such as the wood fibers used to produce handmade paper.


1993 ◽  
Vol 14 (12) ◽  
pp. 1145-1153 ◽  
Author(s):  
V. Alonso ◽  
A. Martín ◽  
R. Borja ◽  
A. Chica

2018 ◽  
Vol 2 ◽  
pp. 145-154 ◽  
Author(s):  
Viviane Costa Correia ◽  
Sergio Francisco Santos ◽  
Holmer Savastano Jr ◽  
Vanderley Moacyr John

Vegetable fibers produced from agroindustrial resources in the macro, micro and nanometric scales have been used as reinforcement in cementitious materials. The cellulosic pulp, besides being used as the reinforcing element, is also the processing fiber that is responsible for the filtration system in the Hatcheck method. On the other hand, the nanofibrillated cellulose has the advantage of having good mechanical performance and high specific surface, which contributes to improve the adhesion between fiber and matrix. In the hybrid reinforcement, with micro and nanofibers, the cellulose performs bonding elements with the matrix and acts as stress transfer bridges in the micro and nano-cracking network with the corresponding strengthening and toughening of the cementitious composite. Some strategies are studied to mitigate the degradation of the vegetable fibers used in cost-effective and non-conventional fiber cement, as well as to reach a sustainable fiber cement production. As a practical example, the accelerated carbonation curing at early age is a developing technology to increase the durability of composite materials: it decreases porosity, promotes a higher density in the interface generating a good fiber–matrix adhesion and a better mechanical behavior. Thus, the vegetable fibers are potentially applicable to produce high mechanical performance and sustainable cementitious materials for use in the Civil Construction.


Author(s):  
Micaela G. Chacón ◽  
Christopher Ibenegbu ◽  
David J. Leak

Abstract Objective A primary drawback to simultaneous saccharification and fermentation (SSF) processes is the incompatibility of the temperature and pH optima for the hydrolysis and fermentation steps—with the former working best at 50–55 °C and pH 4.5–5.5. Here, nine thermophilic Bacillus and Parageobacillus spp. were evaluated for growth and lactic acid fermentation at high temperature and low pH. The most promising candidate was then carried forward to demonstrate SSF using the cellulosic fraction from municipal solid waste (MSW) as a feedstock. Results B. smithii SA8Eth was identified as the most promising candidate and in a batch SSF maintained at 55 °C and pH 5.0, using a cellulase dose of 5 FPU/g glucan, it produced 5.1 g/L lactic acid from 2% (w/v) MSW cellulosic pulp in TSB media. Conclusion This work has both scientific and industrial relevance, as it evaluates a number of previously untrialled bacterial hosts for their compatibility with lignocellulosic SSF for lactic acid production and successfully identifies B. smithii as a potential candidate for such a process.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3275
Author(s):  
Isabel Bascón-Villegas ◽  
Eduardo Espinosa ◽  
Rafael Sánchez ◽  
Quim Tarrés ◽  
Fernando Pérez-Rodríguez ◽  
...  

Horticultural plant residues (tomato, pepper, and eggplant) were identified as new sources for lignocellulose nanofibers (LCNF). Cellulosic pulp was obtained from the different plant residues using an environmentally friendly process, energy-sustainable, simple, and with low-chemical reagent consumption. The chemical composition of the obtained pulps was analyzed in order to study its influence in the nanofibrillation process. Cellulosic fibers were subjected to two different pretreatments, mechanical and TEMPO(2,2,6,6-Tetramethyl-piperidin-1-oxyl)-mediated oxidation, followed by high-pressure homogenization to produce different lignocellulose nanofibers. Then, LCNF were deeply characterized in terms of nanofibrillation yield, cationic demand, carboxyl content, morphology, crystallinity, and thermal stability. The suitability of each raw material to produce lignocellulose nanofibers was analyzed from the point of view of each pretreatment. TEMPO-mediated oxidation was identified as a more effective pretreatment to produce LCNF, however, it produces a decrease in the thermal stability of the LCNF. The different LCNF were added as reinforcing agent on recycled paperboard and compared with the improving produced by the industrial mechanical beating. The analysis of the papersheets’ mechanical properties shows that the addition of LCNF as a reinforcing agent in the paperboard recycling process is a viable alternative to mechanical beating, achieving greater reinforcing effect and increasing the products’ life cycles.


2017 ◽  
Vol 116 ◽  
pp. 243-259 ◽  
Author(s):  
Diego Tamburini ◽  
Jeannette Jacqueline Łucejko ◽  
Magdalena Zborowska ◽  
Francesca Modugno ◽  
Emma Cantisani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document