scholarly journals Can global models provide insights into regional mitigation strategies? A diagnostic model comparison study of bioenergy in Brazil

2022 ◽  
Vol 170 (1-2) ◽  
Author(s):  
Alexandre C. Köberle ◽  
Vassilis Daioglou ◽  
Pedro Rochedo ◽  
André F. P. Lucena ◽  
Alexandre Szklo ◽  
...  

AbstractThe usefulness of global integrated assessment model (IAM) results for policy recommendation in specific regions has not been fully assessed to date. This study presents the variation in results across models for a given region, and what might be behind this variation and how model assumptions and structures drive results. Understanding what drives the differences across model results is important for national policy relevance of global scenarios. We focus on the use of bioenergy in Brazil, a country expected to play an important role in future bioenergy production. We use results of the Stanford University Energy Modeling Forum’s 33rd Study (EMF-33) model comparison exercise to compare and assess projections of Brazil’s bioenergy pathways under climate mitigation scenarios to explore how 10 global IAMs compare to recent trends in the country. We find that, in their current form, global IAMs have limited potential to supply robust insights into regional mitigation strategies. Our results suggest fertile ground for a new research agenda to improve regional representation in global IAMs with improved spatial and technological resolutions.

2021 ◽  
Author(s):  
Alexandre C Köberle ◽  
Vassilis Daioglou ◽  
Pedro Rochedo ◽  
André F. P. Lucena ◽  
Alexandre Szklo ◽  
...  

Abstract The usefulness of global integrated assessment model (IAM) results for policy recommendation in specific regions has not been fully assessed to date. This study presents the variation in results across models for a given region, and what might be behind this variation and how model assumptions and structures drive results. Understanding what drives the differences across model results is important for national policy relevance of global scenarios. We focus on the use of bioenergy in Brazil, a country expected to play an important role in future bioenergy production. We use results of the Stanford University Energy Modeling Forum’s 33rd Study (EMF-33) model comparison exercise to compare and assess projections of Brazil’s bioenergy pathways under climate mitigation scenarios to explore how 10 global IAMs compare to recent trends in the country. We find that, in their current form, global IAMs have limited potential to supply robust insights into regional mitigation strategies. Our results suggest fertile ground for a new research agenda to improve regional representation in global IAMs with improved spatial and technological resolutions.


2011 ◽  
Vol 02 (04) ◽  
pp. 341-370 ◽  
Author(s):  
EMANUELE MASSETTI ◽  
MASSIMO TAVONI

This paper provides one of the few assessments of the economic implications of climate change policies in the important region of Eastern Europe and post-Soviet states. We use an integrated assessment model to evaluate the consequences of implementing climate policies consistent with the targets proposed by the Major Economies Forum by mid-century. We decompose the economic impacts in terms of domestic abatement costs, of oil trading and of international emission permit trading for a variety of scenarios, and show that these could be substantial for this region. The results point towards innovation and economic diversification as key complementary measures to be implemented in preparation of climate mitigation strategies.


2021 ◽  
Vol 3 ◽  
Author(s):  
Shreekar Pradhan ◽  
William M. Shobe ◽  
Jay Fuhrman ◽  
Haewon McJeon ◽  
Matthew Binsted ◽  
...  

We examine the effects of negative emission technologies availability on fossil fuel-based electricity generating assets under deep decarbonization trajectories. Our study focuses on potential premature retirements (stranding) and committed emissions of existing power plants globally and the effects of deploying direct air carbon capture and biomass-based carbon capture and sequestration technologies. We use the Global Change Analysis Model (GCAM), an integrated assessment model, to simulate the global supply of electricity under a climate mitigation scenario that limits global warming to 1.5–2°C temperature increase over the century. Our results show that the availability of direct air capture (DAC) technologies reduces the stranding of existing coal and gas based conventional power plants and delays any stranding further into the future. DAC deployment under the climate mitigation goal of limiting the end-of-century warming to 1.5–2°C would reduce the stranding of power generation from 250 to 350 GW peaking during 2035-2040 to 130-150 GW in years 2050-2060. With the availability of direct air capture and carbon storage technologies, the carbon budget to meet the climate goal of limiting end-of-century warming to 1.5–2°C would require abating 28–33% of 564 Gt CO2 -the total committed CO2 emissions from the existing power plants vs. a 46–57% reduction in the scenario without direct air capture and carbon storage technologies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Silvia R. Santos da Silva ◽  
Mohamad I. Hejazi ◽  
Gokul Iyer ◽  
Thomas B. Wild ◽  
Matthew Binsted ◽  
...  

AbstractClimate change mitigation will require substantial investments in renewables. In addition, climate change will affect future renewable supply and hence, power sector investment requirements. We study the implications of climate impacts on renewables for power sector investments under deep decarbonization using a global integrated assessment model. We focus on Latin American and Caribbean, an under-studied region but of great interest due to its strong role in international climate mitigation and vulnerability to climate change. We find that accounting for climate impacts on renewables results in significant additional investments ($12–114 billion by 2100 across Latin American countries) for a region with weak financial infrastructure. We also demonstrate that accounting for climate impacts only on hydropower—a primary focus of previous studies—significantly underestimates cumulative investments, particularly in scenarios with high intermittent renewable deployment. Our study underscores the importance of comprehensive analyses of climate impacts on renewables for improved energy planning.


2020 ◽  
Vol 163 (3) ◽  
pp. 1603-1620 ◽  
Author(s):  
Vassilis Daioglou ◽  
Steven K. Rose ◽  
Nico Bauer ◽  
Alban Kitous ◽  
Matteo Muratori ◽  
...  

AbstractBioenergy is expected to play an important role in long-run climate change mitigation strategies as highlighted by many integrated assessment model (IAM) scenarios. These scenarios, however, also show a very wide range of results, with uncertainty about bioenergy conversion technology deployment and biomass feedstock supply. To date, the underlying differences in model assumptions and parameters for the range of results have not been conveyed. Here we explore the models and results of the 33rd study of the Stanford Energy Modeling Forum to elucidate and explore bioenergy technology specifications and constraints that underlie projected bioenergy outcomes. We first develop and report consistent bioenergy technology characterizations and modeling details. We evaluate the bioenergy technology specifications through a series of analyses—comparison with the literature, model intercomparison, and an assessment of bioenergy technology projected deployments. We find that bioenergy technology coverage and characterization varies substantially across models, spanning different conversion routes, carbon capture and storage opportunities, and technology deployment constraints. Still, the range of technology specification assumptions is largely in line with bottom-up engineering estimates. We then find that variation in bioenergy deployment across models cannot be understood from technology costs alone. Important additional determinants include biomass feedstock costs, the availability and costs of alternative mitigation options in and across end-uses, the availability of carbon dioxide removal possibilities, the speed with which large scale changes in the makeup of energy conversion facilities and integration can take place, and the relative demand for different energy services.


2020 ◽  
Author(s):  
Garry D. Hayman ◽  
Edward Comyn-Platt ◽  
Chris Huntingford ◽  
Anna B. Harper ◽  
Tom Powell ◽  
...  

Abstract. Scenarios avoiding global warming greater than 1.5 or 2 °C, as stipulated in the Paris Agreement, may require the combined mitigation of anthropogenic greenhouse gas emissions alongside enhancing negative emissions through approaches such as afforestation/reforestation (AR) and biomass energy with carbon capture and storage (BECCS). We use the JULES land-surface model coupled to an inverted form of the IMOGEN climate emulator to investigate mitigation scenarios that achieve the 1.5 or 2 °C warming targets of the Paris Agreement. Specifically, we characterise the global and regional effectiveness of land-based (BECCS and/or AR) and anthropogenic methane (CH4) emission mitigation, separately and in combination, on the anthropogenic fossil fuel carbon dioxide emission budgets (AFFEBs) to 2100, using consistent data and socio-economic assumptions from the IMAGE integrated assessment model. The analysis includes the effects of the methane and carbon-climate feedbacks from wetlands and permafrost thaw, which we have shown previously to be significant constraints on the AFFEBs. Globally, mitigation of anthropogenic CH4 emissions has large impacts on the anthropogenic fossil fuel emission budgets, potentially offsetting (i.e. allowing extra) carbon dioxide emissions of 188–212 GtC. Methane mitigation is beneficial everywhere, particularly for the major CH4-emitting regions of India, USA and China. Land-based mitigation has the potential to offset 51–100 GtC globally, but both the effectiveness and the preferred land-management strategy (i.e., AR or BECCS) have strong regional dependencies. Additional analysis shows extensive BECCS could adversely affect water security for several regions. Our results highlight the extra potential CO2 emissions that can occur, while still keeping global warming below key warming thresholds, by investment in regionally appropriate mitigation strategies.


2013 ◽  
Vol 04 (04) ◽  
pp. 1340010 ◽  
Author(s):  
DAVID McCOLLUM ◽  
YU NAGAI ◽  
KEYWAN RIAHI ◽  
GIACOMO MARANGONI ◽  
KATHERINE CALVIN ◽  
...  

The levels of investment needed to mobilize an energy system transformation and mitigate climate change are not known with certainty. This paper aims to inform the ongoing dialogue and in so doing to guide public policy and strategic corporate decision making. Within the framework of the LIMITS integrated assessment model comparison exercise, we analyze a multi-IAM ensemble of long-term energy and greenhouse gas emissions scenarios. Our study provides insight into several critical but uncertain areas related to the future investment environment, for example in terms of where capital expenditures may need to flow regionally, into which sectors they might be concentrated, and what policies could be helpful in spurring these financial resources. We find that stringent climate policies consistent with a 2°C climate change target would require a considerable upscaling of investments into low-carbon energy and energy efficiency, reaching approximately $45 trillion (range: $30–$75 trillion) cumulative between 2010 and 2050, or about $1.1 trillion annually. This represents an increase of some $30 trillion ($10–$55 trillion), or $0.8 trillion per year, beyond what investments might otherwise be in a reference scenario that assumes the continuation of present and planned emissions-reducing policies throughout the world. In other words, a substantial "clean-energy investment gap" of some $800 billion/yr exists — notably on the same order of magnitude as present-day subsidies for fossil energy and electricity worldwide ($523 billion). Unless the gap is filled rather quickly, the 2°C target could potentially become out of reach.


2020 ◽  
Vol 163 (3) ◽  
pp. 1519-1538 ◽  
Author(s):  
Mathijs J. H. M. Harmsen ◽  
Pim van Dorst ◽  
Detlef P. van Vuuren ◽  
Maarten van den Berg ◽  
Rita Van Dingenen ◽  
...  

AbstractMitigation of black carbon (BC) aerosol emissions can potentially contribute to both reducing air pollution and climate change, although mixed results have been reported regarding the latter. A detailed quantification of the synergy between global air quality and climate policy is still lacking. This study contributes with an integrated assessment model-based scenario analysis of BC-focused mitigation strategies aimed at maximizing air quality and climate benefits. The impacts of these policy strategies have been examined under different socio-economic conditions, climate ambitions, and BC mitigation strategies. The study finds that measures targeting BC emissions (including reduction of co-emitted organic carbon, sulfur dioxide, and nitrogen dioxides) result in significant decline in premature mortality due to ambient air pollution, in the order of 4 to 12 million avoided deaths between 2015 and 2030. Under certain circumstances, BC mitigation can also reduce climate change, i.e., mainly by lowering BC emissions in the residential sector and in high BC emission scenarios. Still, the effect of BC mitigation on global mean temperature is found to be modest at best (with a maximum short-term GMT decrease of 0.02 °C in 2030) and could even lead to warming (with a maximum increase of 0.05 °C in case of a health-focused strategy, where all aerosols are strongly reduced). At the same time, strong climate policy would improve air quality (the opposite relation) through reduced fossil fuel use, leading to an estimated 2 to 5 million avoided deaths in the period up to2030. By combining both air quality and climate goals, net health benefits can be maximized.


2015 ◽  
Vol 4 (1) ◽  
pp. 4-18
Author(s):  
Lauren Rebecca Sklaroff

This state of the field essay examines recent trends in American Cultural History, focusing on music, race and ethnicity, material culture, and the body. Expanding on key themes in articles featured in the special issue of Cultural History, the essay draws linkages to other important literatures. The essay argues for more a more serious consideration of the products within popular culture, less as a reflection of social or economic trends, rather for their own historical significance. While the essay examines some classic texts, more emphasis is on work published within the last decade. Here, interdisciplinary methods are stressed, as are new research perspectives developing by non-western historians.


2019 ◽  
Vol 11 (13) ◽  
pp. 3672 ◽  
Author(s):  
Iñigo Capellán-Pérez ◽  
David Álvarez-Antelo ◽  
Luis J. Miguel

There is a general need to facilitate citizens’ understanding of the global sustainability problem with the dual purpose of raising their awareness of the seriousness of the problem and helping them get closer to understanding the complexity of the solutions. Here, the design and application of the participatory simulation game Global Sustainability Crossroads is described, based on a global state-of-the-art energy–economy–environment model, which creates a virtual scenario where the participants are confronted with the design of climate mitigation strategies as well as the social, economic, and environmental consequences of decisions. The novelty of the game rests on the global scope and the representation of the drivers of anthropogenic emissions within the MEDEAS-World model, combined with a participatory simulation group dynamic flexible enough to be adapted to a diversity of contexts and participants. The performance of 13 game workshops with ~420 players has shown it has a significant pedagogical potential: the game is able to generate discussions on crucial topics which are usually outside the public realm such as the relationship between economic growth and sustainability, the role of technology, how human desires are limited by biophysical constraints or the possibility of climate tipping points.


Sign in / Sign up

Export Citation Format

Share Document