Genetic diversity of the great bustard in Iberia and Morocco: risks from current population fragmentation

2008 ◽  
Vol 10 (2) ◽  
pp. 379-390 ◽  
Author(s):  
Juan C. Alonso ◽  
Carlos A. Martín ◽  
Javier A. Alonso ◽  
Carlos Palacín ◽  
Marina Magaña ◽  
...  
Oikos ◽  
2020 ◽  
Vol 129 (4) ◽  
pp. 526-532
Author(s):  
Calvin Dytham ◽  
Michael D. F. Thom

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1759
Author(s):  
Jose L. Horreo ◽  
Rainer Raab ◽  
Péter Spakovszky ◽  
Juan Carlos Alonso

The genetic diversity, population structure and gene flow of the Great Bustards (Otis tarda) living in Austria-Slovakia-West Hungary (West-Pannonian region), one of the few populations of this globally threatened species that survives across the Palaearctic, has been assessed for the first time in this study. Fourteen recently developed microsatellite loci identified one single population in the study area, with high values of genetic diversity and gene flow between two different genetic subunits. One of these subunits (Heideboden) was recognized as a priority for conservation, as it could be crucial to maintain connectivity with the central Hungarian population and thus contribute to keeping contemporary genetic diversity. Current conservation efforts have been successful in saving this threatened population from extinction two decades ago, and should continue to guarantee its future survival.


The Condor ◽  
2004 ◽  
Vol 106 (2) ◽  
pp. 215-228 ◽  
Author(s):  
Katherine Ralls ◽  
Jonathan D. Ballou

Abstract The last wild California Condor (Gymnogyps californianus) was brought into captivity in 1987. Captive breeding was successful and reintroduction efforts began in 1992. The current population is descended from 14 individuals belonging to three genetic “clans.” This population bottleneck led to the loss of genetic variation and changes in allele frequencies, including a probable increase in the frequency of the putative allele for chondrodystrophy, a lethal form of dwarfism. We use studbook data to analyze the current genetic and demographic status of the population and explain how it is managed to meet specific goals. In August 2002 the population consisted of 206 individuals distributed among three captive-breeding facilities and three reintroduction sites. The population is managed to preserve genetic diversity using the concept of mean kinship. Growth of the total population has been between 10% and 15% per year since 1987, but the growth of the captive population has been only about 5% per year since 1992 due to the removal of chicks for reintroduction. Assuming that founding birds within clans were half-siblings, the birds used to found the captive population theoretically contained 92% of the heterozygosity present in the hypothetical wild base population. About 99.5% of this heterozygosity has been retained in the current population. Alleles from most founders are well represented across captive- breeding facilities and reintroduction sites. The genetic status of this population compares favorably with other species that have been rescued from extinction by captive breeding. Situación Genética y Manejo de Gymnogyps californianus Resumen. El último cóndor californiano (Gymnogyps californianus) silvestre fue puesto en cautiverio en 1987. La reproducción en cautiverio fue exitosa y las reintroducciones comenzaron en 1992. La población actual desciende de 14 individuos pertenecientes a tres “clanes” genéticos. Este cuello de botella poblacional dió lugar a la pérdida de variabilidad genética y a cambios en la frecuencia de alelos, incluyendo un probable incremento en la frecuencia del alelo para condrodistrofia, una forma letal de enanismo. En este estudio, utilizamos datos del libro genealógico para analizar la situación genética y demográfica actual de la población y para explicar cómo se está manejando la población para cumplir con metas específicas. En agosto del 2002 la población consistía de 206 individuos distribuidos en tres instalaciones de reproducción en cautiverio y tres sitios de reintroducción. La población fue manejada con el propósito de conservar la diversidad genética usando el concepto de parentesco medio. El crecimiento de la población ha sido de entre 10% y 15% por año desde 1987, pero el crecimiento de la población en cautiverio ha sido únicamente de aproximadamente un 5% por año desde 1992 debido a la remoción de los pollos para su reintroducción. Suponiendo que los cóndores fundadores dentro de cada clan eran medio- hermanos, las aves que fueron utilizadas para fundar la población en cautiverio teóricamente contienen un 92% de la heterocigosidad presente en la población silvestre base hipotética. Cerca de un 99.5% de esta heterocigosidad ha sido retenida en la población actual. Alelos de la mayoría de los fundadores están bien representados en las diversas instalaciones de reproducción en cautiverio y sitios de reintroducción. La situación de esta población parece ser mejor que la de otras especies silvestres que han sido rescatadas por medio de la reproducción en cautiverio.


2020 ◽  
Author(s):  
Sara Lampi ◽  
Jonas Donner ◽  
Heidi Anderson ◽  
Jaakko L. O. Pohjoismäki

Abstract Background Discrete breed ideals are not restricted to delimiting dog breeds from another, but also are key drivers of subpopulation differentiation. As genetic differentiation due to population fragmentation results in increased rates of inbreeding and loss of genetic diversity, detecting and alleviating the reasons of population fragmentation can provide effective tools for the maintenance of healthy dog breeds. Results Using a genome wide SNP array, we detected genetic differentiation to subpopulations in six breeds, Belgian Shepherd, English Greyhound, Finnish Lapphund, Italian Greyhound, Labrador Retriever and Shetland Sheepdog, either due to geographical isolation or as a result of differential breeding strategies. The subpopulation differentiation was strongest in show dog lineages. Conclusions Besides geographical differentiation caused by founder effect and lack of gene flow, selection on champion looks or restricted pedigrees is a strong driver of population fragmentation. Artificial barriers for gene flow between the different subpopulations should be recognized and abolished for the maintenance of genetic diversity within a breed.


2020 ◽  
Author(s):  
Sara Lampi ◽  
Jonas Donner ◽  
Heidi Anderson ◽  
Jaakko L. O. Pohjoismäki

Abstract Background: Discrete breed ideals are not restricted to delimiting dog breeds from another, but also are key drivers of subpopulation differentiation. As genetic differentiation due to population fragmentation results in increased rates of inbreeding and loss of genetic diversity, detecting and alleviating the reasons of population fragmentation can provide effective tools for the maintenance of healthy dog breeds. Results: Using a genome wide SNP array, we detected genetic differentiation to subpopulations in six breeds, Belgian Shepherd, English Greyhound, Finnish Lapphund, Italian Greyhound, Labrador Retriever and Shetland Sheepdog, either due to geographical isolation or as a result of differential breeding strategies. The subpopulation differentiation was strongest in show dog lineages.Conclusions: Besides geographical differentiation caused by founder effect and lack of gene flow, selection on champion looks or restricted pedigrees is a strong driver of population fragmentation. Artificial barriers for gene flow between the different subpopulations should be recognized, their necessity evaluated critically and perhaps abolished in order to maintain genetic diversity within a breed. Subpopulation differentiation might also result in false positive signals in genome-wide association studies of different traits.Lay summary: Purebred dogs are, by definition, reproductively isolated from other breeds. However, similar isolation can also occur within a breed due to conflicting breeder ideals and geographic distances between the dog populations. We show here that both of these examples can contribute to breed division, with subsequent loss of genetic variation in the resulting breed lineages. Breeders should avoid creating unnecessary boundaries between breed lineages and facilitate the exchange of dogs between countries.


Sign in / Sign up

Export Citation Format

Share Document