scholarly journals Genetic structure of the threatened West-Pannonian population of Great Bustard (Otis tarda)

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1759
Author(s):  
Jose L. Horreo ◽  
Rainer Raab ◽  
Péter Spakovszky ◽  
Juan Carlos Alonso

The genetic diversity, population structure and gene flow of the Great Bustards (Otis tarda) living in Austria-Slovakia-West Hungary (West-Pannonian region), one of the few populations of this globally threatened species that survives across the Palaearctic, has been assessed for the first time in this study. Fourteen recently developed microsatellite loci identified one single population in the study area, with high values of genetic diversity and gene flow between two different genetic subunits. One of these subunits (Heideboden) was recognized as a priority for conservation, as it could be crucial to maintain connectivity with the central Hungarian population and thus contribute to keeping contemporary genetic diversity. Current conservation efforts have been successful in saving this threatened population from extinction two decades ago, and should continue to guarantee its future survival.

1999 ◽  
Vol 29 (9) ◽  
pp. 1311-1316 ◽  
Author(s):  
Man Kyu Huh

The genetic diversity and population genetic structure of Alnus japonica (Thunb.) Steudel in Korea were studied and compared with those of alder from Canada. Nineteen of the 25 loci studied (76.0%) showed detectable polymorphism. The mean genetic diversity within populations was 0.207, which was higher than that for two Canadian alder species (Alnus rugosa (Du Roi) Spreng. and Alnus crispa (Ait.) Pursh). Analysis of fixation indices, calculated for all polymorphic loci in each population, showed a substantial deficiency of heterozygotes relative to Hardy-Weinberg expectations. The mean population differentiation value of A. japonica in Korea (GST = 0.095) is similar to those of A. rugosa in Canada (GST = 0.052). These low values of GST in two countries, reflecting little spatial genetic differentiation, may indicate extensive gene flow (via pollen and (or) seeds) and (or) recent colonization.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Yong Wei ◽  
Jiatian Wang ◽  
Zhangyao Song ◽  
Yulan He ◽  
Zihao Zheng ◽  
...  

Abstract Background The Asian tiger mosquito, Aedes albopictus, is one of the 100 worst invasive species in the world and the vector for several arboviruses including dengue, Zika and chikungunya viruses. Understanding the population spatial genetic structure, migration, and gene flow of vector species is critical to effectively preventing and controlling vector-borne diseases. Little is known about the population structure and genetic differentiation of native Ae. albopictus in China. The aim of this study was to examine the patterns of the spatial genetic structures of native Ae. albopictus populations, and their relationship to dengue incidence, on a large geographical scale. Methods During 2016–2018, adult female Ae. albopictus mosquitoes were collected by human landing catch (HLC) or human-bait sweep-net collections in 34 localities across China. Thirteen microsatellite markers were used to examine the patterns of genetic diversity, population structure, and gene flow among native Ae. albopictus populations. The correlation between population genetic indices and dengue incidence was also examined. Results A total of 153 distinct alleles were identified at the 13 microsatellite loci in the tested populations. All loci were polymorphic, with the number of distinct alleles ranging from eight to sixteen. Genetic parameters such as PIC, heterozygosity, allelic richness and fixation index (FST) revealed highly polymorphic markers, high genetic diversity, and low population genetic differentiation. In addition, Bayesian analysis of population structure showed two distinct genetic groups in southern-western and eastern-central-northern China. The Mantel test indicated a positive correlation between genetic distance and geographical distance (R2 = 0.245, P = 0.01). STRUCTURE analysis, PCoA and GLS interpolation analysis indicated that Ae. albopictus populations in China were regionally clustered. Gene flow and relatedness estimates were generally high between populations. We observed no correlation between population genetic indices of microsatellite loci in Ae. albopictus populations and dengue incidence. Conclusion Strong gene flow probably assisted by human activities inhibited population differentiation and promoted genetic diversity among populations of Ae. albopictus. This may represent a potential risk of rapid spread of mosquito-borne diseases. The spatial genetic structure, coupled with the association between genetic indices and dengue incidence, may have important implications for understanding the epidemiology, prevention, and control of vector-borne diseases.


2013 ◽  
Vol 11 (3) ◽  
pp. 625-636 ◽  
Author(s):  
Bruno F. Melo ◽  
Yoshimi Sato ◽  
Fausto Foresti ◽  
Claudio Oliveira

The rio São Francisco basin contains many endemic species, such as Prochilodus argenteus and P. costatus, which have great commercial importance. However, information about the main recruitment sites and genetic studies containing extensive sampling of these species are scarce. To investigate the roles of the marginal lagoons in the maintenance of genetic variability and in the population structure, we analyzed six microsatellite loci in nine sampling groups of P. argenteusand five sampling groups of P. costatus. Our results showed high levels of genetic variability and low values of genetic differentiation for P. argenteus (FST =0.008, P< 0.05) and for P. costatus(FST =0.031, P < 0.05). In addition, high values of gene flow combined with a small genetic distance suggest the presence of a single population for each species in the middle rio São Francisco basin. Moreover, putative migration routes involving marginal lagoons during the reproductive season could be detected, confirming the importance of these nurseries in the lifecycle of these species. Our results also indicate the necessity of adequate management of the fish resources and the conservation of the floodplains in the rio São Francisco basin.


Plant Gene ◽  
2020 ◽  
Vol 21 ◽  
pp. 100206 ◽  
Author(s):  
Bhuwnesh Goswami ◽  
Rekha Rankawat ◽  
Wahlang Daniel Regie ◽  
Bhana Ram Gadi ◽  
Satyawada Rama Rao

2017 ◽  
Vol 158 (3) ◽  
pp. 761-772 ◽  
Author(s):  
Gang Liu ◽  
Xiaolong Hu ◽  
Aaron B. A. Shafer ◽  
Minghao Gong ◽  
Morigen Han ◽  
...  

2019 ◽  
Author(s):  
Angelica Menchaca ◽  
Natalia Rossi ◽  
Jeremy Froidevaux ◽  
Isabela Dias-freedman ◽  
Anthony Caragiulo ◽  
...  

Abstract Connectivity among jaguar (Panthera onca) populations will ensure natural gene flow and the long-term survival of the species throughout its range. Jaguar conservation efforts have focused primarily on connecting suitable habitat in a broad-scale. Accelerated habitat reduction, human-wildlife conflict, limited funding, and the complexity of jaguar behaviour have proven challenging to maintain connectivity between populations effectively. Here, we used non-invasive genetic sampling and individual-based conservation genetic analyses to assess genetic diversity and levels of genetic connectivity between individuals in the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We used expert knowledge and scientific literature to develop models of landscape permeability based on circuit theory with fine-scale landscape features as ecosystem types, distance to human settlements and roads to predict the most probable jaguar movement across central Belize. Results We used 12 highly polymorphic microsatellite loci to identify 50 individual jaguars. We detected high levels of genetic diversity across loci (HE= 0.61, HO= 0.55, and NA=9.33). Using Bayesian clustering and multivariate models to assess gene flow and genetic structure, we identified one single group of jaguars (K = 1). We identified critical areas for jaguar movement that fall outside the boundaries of current protected areas in central Belize. We detected two main areas of high landscape permeability in a stretch of approximately 18 km between Sittee River Forest Reserve and Manatee Forest Reserve that may increase functional connectivity and facilitate jaguar dispersal from and to Cockscomb Basin Wildlife Sanctuary. Our analysis provides important insights on fine-scale genetic and landscape connectivity of jaguars in central Belize, an area of conservation concern. Conclusions The results of our study demonstrate high levels of relatively recent gene flow for jaguars between two study sites in central Belize. Our landscape analysis detected corridors of expected jaguar movement between the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We highlight the importance of maintaining already established corridors and consolidating new areas that further promote jaguar movement across suitable habitat beyond the boundaries of currently protected areas. Continued conservation efforts within identified corridors will further maintain and increase genetic connectivity in central Belize.


2021 ◽  
Vol 9 ◽  
Author(s):  
Heather R. Kates ◽  
Fernando López Anido ◽  
Guillermo Sánchez-de la Vega ◽  
Luis E. Eguiarte ◽  
Pamela S. Soltis ◽  
...  

Studies of domestication genetics enrich our understanding of how domestication shapes genetic and morphological diversity. We characterized patterns of genetic variation in two independently domesticated pumpkins and their wild progenitors to assess and compare genetic consequences of domestication. To compare genetic diversity pre- and post-domestication and to identify genes targeted by selection during domestication, we analyzed ∼15,000 SNPs of 48 unrelated accessions, including wild, landrace, and improved lines for each of two pumpkin species, Cucurbita argyrosperma and Cucurbita maxima. Genetic diversity relative to its wild progenitor was reduced in only one domesticated subspecies, C. argyrosperma ssp. argyrosperma. The two species have different patterns of genetic structure across domestication status. Only 1.5% of the domestication features identified for both species were shared between species. These findings suggest that ancestral genetic diversity, wild-crop gene flow, and domestication practices shaped the genetic diversity of two similar Cucurbita crops in different ways, adding to our understanding of how genetic diversity changes during the processes of domestication and how trait improvement impacts the breeding potential of modern crops.


2020 ◽  
Author(s):  
Brenda G. Díaz ◽  
Maria I. Zucchi ◽  
Alessandro. Alves-Pereira ◽  
Caléo P. de Almeida ◽  
Aline C. L. Moraes ◽  
...  

AbstractAcrocomia (Arecaceae) is a genus widely distributed in tropical and subtropical America that has been achieving economic interest due to the great potential of oil production of some of its species. In particular A. aculeata, due to its vocation to supply oil with the same productive capacity as the oil palm even in areas with water deficit. Although eight species are recognized in the genus, the taxonomic classification based on morphology and geographic distribution is still controversial. Knowledge about the genetic diversity and population structure of the species is limited, which has limited the understanding of the genetic relationships and the orientation of management, conservation, and genetic improvement activities of species of the genus. In the present study, we analyzed the genomic diversity and population structure of seven species of Acrocomia including 117 samples of A. aculeata covering a wide geographical area of occurrence, using single nucleotide Polymorphism (SNP) markers originated from Genotyping By Sequencing (GBS). The genetic structure of the Acrocomia species were partially congruent with the current taxonomic classification based on morphological characters, recovering the separation of the species A. aculeata, A. totai, A. crispa and A. intumescens as distinct taxonomic groups. However, the species A. media was attributed to the cluster of A. aculeata while A. hassleri and A. glauscescens were grouped together with A. totai. The species that showed the highest and lowest genetic diversity were A. totai and A. media, respectively. When analyzed separately, the species A. aculeata showed a strong genetic structure, forming two genetic groups, the first represented mainly by genotypes from Brazil and the second by accessions from Central and North American countries. Greater genetic diversity was found in Brazil when compared to the other countries. Our results on the genetic diversity of the genus are unprecedented, as is also establishes new insights on the genomic relationships between Acrocomia species. It is also the first study to provide a more global view of the genomic diversity of A. aculeata. We also highlight the applicability of genomic data as a reference for future studies on genetic diversity, taxonomy, evolution and phylogeny of the Acrocomia genus, as well as to support strategies for the conservation, exploration and breeding of Acrocomia species and in particular A. aculeata.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0240743
Author(s):  
Maurice Marcel Sandeu ◽  
Charles Mulamba ◽  
Gareth D. Weedall ◽  
Charles S. Wondji

Background Insecticide resistance is challenging the effectiveness of insecticide-based control interventions to reduce malaria burden in Africa. Understanding the molecular basis of insecticides resistance and patterns of gene flow in major malaria vectors such as Anopheles funestus are important steps for designing effective resistance management strategies. Here, we investigated the association between patterns of genetic structure and expression profiles of genes involved in the pyrethroid resistance in An. funestus across Uganda and neighboring Kenya. Methods Blood-fed mosquitoes An. funestus were collected across the four localities in Uganda and neighboring Kenya. A Microarray-based genome-wide transcription analysis was performed to identify the set of genes associated with permethrin resistance. 17 microsatellites markers were genotyped and used to establish patterns of genetic differentiation. Results Microarray-based genome-wide transcription profiling of pyrethroid resistance in four locations across Uganda (Arua, Bulambuli, Lira, and Tororo) and Kenya (Kisumu) revealed that resistance was mainly driven by metabolic resistance. The most commonly up-regulated genes in pyrethroid resistance mosquitoes include cytochrome P450s (CYP9K1, CYP6M7, CYP4H18, CYP4H17, CYP4C36). However, expression levels of key genes vary geographically such as the P450 CYP6M7 [Fold-change (FC) = 115.8 (Arua) vs 24.05 (Tororo) and 16.9 (Kisumu)]. In addition, several genes from other families were also over-expressed including Glutathione S-transferases (GSTs), carboxylesterases, trypsin, glycogenin, and nucleotide binding protein which probably contribute to insecticide resistance across Uganda and Kenya. Genotyping of 17 microsatellite loci in the five locations provided evidence that a geographical shift in the resistance mechanisms could be associated with patterns of population structure throughout East Africa. Genetic and population structure analyses indicated significant genetic differentiation between Arua and other localities (FST>0.03) and revealed a barrier to gene flow between Arua and other areas, possibly associated with Rift Valley. Conclusion The correlation between patterns of genetic structure and variation in gene expression could be used to inform future interventions especially as new insecticides are gradually introduced.


Sign in / Sign up

Export Citation Format

Share Document