scholarly journals Recent large-scale landscape changes, genetic drift and reintroductions characterize the genetic structure of Norwegian wild reindeer

2019 ◽  
Vol 20 (6) ◽  
pp. 1405-1419 ◽  
Author(s):  
Kjersti S. Kvie ◽  
Jan Heggenes ◽  
Bård-Jørgen Bårdsen ◽  
Knut H. Røed

Abstract Landscape changes, such as habitat loss and fragmentation, subdivide wild populations, reduce their size, and limit gene flow. These changes may further lead to depletion of genetic variation within populations as well as accelerating differentiation among populations. As a migratory species requiring large living areas, wild reindeer (Rangifer tarandus) is highly vulnerable to human activity. The number and continued presence of wild reindeer have been significantly reduced due to accelerating anthropogenic habitat modifications, as well as displacement in benefit of domesticated herds of the species. As a basis for future management strategies we assess genetic structure and levels of genetic variation in Norwegian wild reindeer by analysing 12 microsatellite loci and the mitochondrial control region in 21 management units with varying population sizes. Overall, both markers showed highly varying levels of genetic variation, with reduced variation in the smaller and more isolated populations. The microsatellite data indicated a relationship between population size and genetic variation. This relationship was positive and linear until a threshold for population size was reached at approximately 1500 reindeer. We found high levels of differentiation among most populations, indicating low levels of gene flow, but only a weak correlation between geographic and genetic distances. Our results imply that the genetic structure of Norwegian wild reindeer is mainly driven by recent colonization history, population size, as well as human-induced landscape fragmentation, restricting gene flow and leading to high levels of genetic drift. To sustain viable populations, conservation strategies should focus on genetic connectivity between populations.

Lankesteriana ◽  
2016 ◽  
Vol 3 (2) ◽  
Author(s):  
Raymond L. Tremblay

<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><span>Evolution through either natural selection or genetic drift is dependent on variation at the genetic and mor- phological levels. Processes that influence the genetic structure of populations include mating systems, effective population size, mutation rates and gene flow among populations. </span></p></div></div></div>


2012 ◽  
Vol 60 (1) ◽  
pp. 32 ◽  
Author(s):  
Laurence J. Clarke ◽  
Duncan I. Jardine ◽  
Margaret Byrne ◽  
Kelly Shepherd ◽  
Andrew J. Lowe

Atriplex sp. Yeelirrie Station (L. Trotter & A. Douglas LCH 25025) is a highly restricted, potentially new species of saltbush, known from only two sites ~30 km apart in central Western Australia. Knowledge of genetic structure within the species is required to inform conservation strategies as both populations occur within a palaeovalley that contains significant near-surface uranium mineralisation. We investigate the structure of genetic variation within populations and subpopulations of this taxon using nuclear microsatellites. Internal transcribed spacer sequence data places this new taxon within a clade of polyploid Atriplex species, and the maximum number of alleles per locus suggests it is hexaploid. The two populations possessed similar levels of genetic diversity, but exhibited a surprising level of genetic differentiation given their proximity. Significant isolation by distance over scales of less than 5 km suggests dispersal is highly restricted. In addition, the proportion of variation between the populations (12%) is similar to that among A. nummularia populations sampled at a continent-wide scale (several thousand kilometres), and only marginally less than that between distinct A. nummularia subspecies. Additional work is required to further clarify the exact taxonomic status of the two populations. We propose management recommendations for this potentially new species in light of its highly structured genetic variation.


2019 ◽  
Author(s):  
Angelica Menchaca ◽  
Natalia Rossi ◽  
Jeremy Froidevaux ◽  
Isabela Dias-freedman ◽  
Anthony Caragiulo ◽  
...  

Abstract Connectivity among jaguar (Panthera onca) populations will ensure natural gene flow and the long-term survival of the species throughout its range. Jaguar conservation efforts have focused primarily on connecting suitable habitat in a broad-scale. Accelerated habitat reduction, human-wildlife conflict, limited funding, and the complexity of jaguar behaviour have proven challenging to maintain connectivity between populations effectively. Here, we used non-invasive genetic sampling and individual-based conservation genetic analyses to assess genetic diversity and levels of genetic connectivity between individuals in the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We used expert knowledge and scientific literature to develop models of landscape permeability based on circuit theory with fine-scale landscape features as ecosystem types, distance to human settlements and roads to predict the most probable jaguar movement across central Belize. Results We used 12 highly polymorphic microsatellite loci to identify 50 individual jaguars. We detected high levels of genetic diversity across loci (HE= 0.61, HO= 0.55, and NA=9.33). Using Bayesian clustering and multivariate models to assess gene flow and genetic structure, we identified one single group of jaguars (K = 1). We identified critical areas for jaguar movement that fall outside the boundaries of current protected areas in central Belize. We detected two main areas of high landscape permeability in a stretch of approximately 18 km between Sittee River Forest Reserve and Manatee Forest Reserve that may increase functional connectivity and facilitate jaguar dispersal from and to Cockscomb Basin Wildlife Sanctuary. Our analysis provides important insights on fine-scale genetic and landscape connectivity of jaguars in central Belize, an area of conservation concern. Conclusions The results of our study demonstrate high levels of relatively recent gene flow for jaguars between two study sites in central Belize. Our landscape analysis detected corridors of expected jaguar movement between the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We highlight the importance of maintaining already established corridors and consolidating new areas that further promote jaguar movement across suitable habitat beyond the boundaries of currently protected areas. Continued conservation efforts within identified corridors will further maintain and increase genetic connectivity in central Belize.


2018 ◽  
Author(s):  
Michelle F. DiLeo ◽  
Arild Husby ◽  
Marjo Saastamoinen

AbstractThere is now clear evidence that species across a broad range of taxa harbour extensive heritable variation in dispersal. While studies suggest that this variation can facilitate demographic outcomes such as range expansion and invasions, few have considered the consequences of intraspecific variation in dispersal for the maintenance and distribution of genetic variation across fragmented landscapes. Here we examine how landscape characteristics and individual variation in dispersal combine to predict genetic structure using genomic and spatial data from the Glanville fritillary butterfly. We used linear and latent factor mixed models to identify the landscape features that best predict spatial sorting of alleles in the dispersal-related gene phosphoglucose isomerase (Pgi). We next used structural equation modeling to test if variation in Pgi mediated gene flow as measured by Fst at putatively neutral loci. In a year when the population was expanding following a large decline, individuals with a genotype associated with greater dispersal ability were found at significantly higher frequencies in populations isolated by water and forest, and these populations showed lower levels of genetic differentiation at neutral loci. These relationships disappeared in the next year when metapopulation density was high, suggesting that the effects of individual variation are context dependent. Together our results highlight that 1) more complex aspects of landscape structure beyond just the configuration of habitat can be important for maintaining spatial variation in dispersal traits, and 2) that individual variation in dispersal plays a key role in maintaining genetic variation across fragmented landscapes.Impact summaryUnderstanding how fragmentation affects dispersal and gene flow across human-modified landscapes has long been a goal in evolutionary biology. It is typically assumed that individuals of the same species respond to the landscape in the same way, however growing evidence suggests that individuals can vary considerably in their dispersal traits. While the effects of this individual dispersal variation on range expansions and invasions have been well-characterized, knowledge of how it might mediate genetic responses to landscape fragmentation are almost entirely lacking. Here we demonstrate that individual variation in dispersal is key to the maintenance of genetic variation during a population expansion following a large decline in a butterfly metapopulation. We further show that spatial variation in dispersal is not maintained by the configuration of habitat patches alone, but by a more complex genotype-environment interaction involving the landscape matrix (i.e. landscape features found between habitat patches). This challenges the simplified landscape representations typically used in studies of dispersal evolution that ignore heterogeneity in the landscape matrix. More broadly, our results highlight the interplay of adaptive and neutral processes across fragmented landscapes, suggesting that an understanding of species vulnerability to landscape fragmentation requires consideration of both.


2021 ◽  
Vol 9 ◽  
Author(s):  
Heather R. Kates ◽  
Fernando López Anido ◽  
Guillermo Sánchez-de la Vega ◽  
Luis E. Eguiarte ◽  
Pamela S. Soltis ◽  
...  

Studies of domestication genetics enrich our understanding of how domestication shapes genetic and morphological diversity. We characterized patterns of genetic variation in two independently domesticated pumpkins and their wild progenitors to assess and compare genetic consequences of domestication. To compare genetic diversity pre- and post-domestication and to identify genes targeted by selection during domestication, we analyzed ∼15,000 SNPs of 48 unrelated accessions, including wild, landrace, and improved lines for each of two pumpkin species, Cucurbita argyrosperma and Cucurbita maxima. Genetic diversity relative to its wild progenitor was reduced in only one domesticated subspecies, C. argyrosperma ssp. argyrosperma. The two species have different patterns of genetic structure across domestication status. Only 1.5% of the domestication features identified for both species were shared between species. These findings suggest that ancestral genetic diversity, wild-crop gene flow, and domestication practices shaped the genetic diversity of two similar Cucurbita crops in different ways, adding to our understanding of how genetic diversity changes during the processes of domestication and how trait improvement impacts the breeding potential of modern crops.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247586
Author(s):  
Christine E. Edwards ◽  
Brooke C. Tessier ◽  
Joel F. Swift ◽  
Burgund Bassüner ◽  
Alexander G. Linan ◽  
...  

Understanding genetic diversity and structure in a rare species is critical for prioritizing both in situ and ex situ conservation efforts. One such rare species is Physaria filiformis (Brassicaceae), a threatened, winter annual plant species. The species has a naturally fragmented distribution, occupying three different soil types spread across four disjunct geographical locations in Missouri and Arkansas. The goals of this study were to understand: (1) whether factors associated with fragmentation and small population size (i.e., inbreeding, genetic drift or genetic bottlenecks) have reduced levels of genetic diversity, (2) how genetic variation is structured and which factors have influenced genetic structure, and (3) how much extant genetic variation of P. filiformis is currently publicly protected and the implications for the development of conservation strategies to protect its genetic diversity. Using 16 microsatellite markers, we genotyped individuals from 20 populations of P. filiformis from across its geographical range and one population of Physaria gracilis for comparison and analyzed genetic diversity and structure. Populations of P. filiformis showed comparable levels of genetic diversity to its congener, except a single population in northwest Arkansas showed evidence of a genetic bottleneck and two populations in the Ouachita Mountains of Arkansas showed lower genetic variation, consistent with genetic drift. Populations showed isolation by distance, indicating that migration is geographically limited, and analyses of genetic structure grouped individuals into seven geographically structured genetic clusters, with geographic location/spatial separation showing a strong influence on genetic structure. At least one population is protected for all genetic clusters except one in north-central Arkansas, which should therefore be prioritized for protection. Populations in the Ouachita Mountains were genetically divergent from the rest of P. filiformis; future morphological analyses are needed to identify whether it merits recognition as a new, extremely rare species.


2020 ◽  
Author(s):  
Arjun Biddanda ◽  
Daniel P. Rice ◽  
John Novembre

AbstractA key challenge in human genetics is to describe and understand the distribution of human genetic variation. Often genetic variation is described by showing relationships among populations or individuals, in each case drawing inferences over a large number of variants. Here, we present an alternative representation of human genetic variation that reveals the relative abundance of different allele frequency patterns across populations. This approach allows viewers to easily see several features of human genetic structure: (1) most variants are rare and geographically localized, (2) variants that are common in a single geographic region are more likely to be shared across the globe than to be private to that region, and (3) where two individuals differ, it is most often due to variants that are common globally, regardless of whether the individuals are from the same region or different regions. To guide interpretation of the results, we also apply the visualization to contrasting theoretical scenarios with varying levels of divergence and gene flow. Our variant-centric visualization clarifies the major geographic patterns of human variation and can be used to help correct potential misconceptions about the extent and nature of genetic differentiation among populations.


Genome ◽  
1991 ◽  
Vol 34 (2) ◽  
pp. 288-292 ◽  
Author(s):  
Srinivas Kambhampati ◽  
Karamjit S. Rai

A survey of restriction fragment polymorphism in mitochondrial DNA (mtDNA) of 17 populations of the mosquito Aedes albopictus was undertaken. The mtDNA size was estimated to be about 17.5 kbp. The level of polymorphism was low, with over 99% of the fragments being shared in common among the 17 populations. Three populations, Mauritius, Singapore, and Hong Kong, contained individuals with both the ancestral and novel mtDNA haplotypes. We conclude that the low level of mtDNA polymorphism in A. albopictus is a result of recent range expansion and that the mixture of haplotypes is a likely result of human-aided gene flow among populations.Key words: mitochondrial DNA, genetic variation, genetic structure, Aedes albopictus.


2018 ◽  
Vol 45 (4) ◽  
pp. 396-406 ◽  
Author(s):  
PAUL M. RADLEY ◽  
ROBERT A. DAVIS ◽  
RENÉ W.R.J. DEKKER ◽  
SHAUN W. MOLLOY ◽  
DAVID BLAKE ◽  
...  

SUMMARYAspects of species life histories may increase their susceptibility to climate change. Owing to their exclusive reliance on environmental sources of heat for incubation, megapodes may be especially vulnerable. We employed a trait-based vulnerability assessment to weigh their exposure to projected climate variables of increasing temperatures, fluctuating rainfall and sea level rise and their biological sensitivity and capacity to adapt. While all 21 species were predicted to experience at least a 2 °C increase in mean annual temperature, 12 to experience a moderate or greater fluctuation in rainfall and 16 to experience rising seas, the most vulnerable megapodes are intrinsically rare and range restricted. Species that employ microbial decomposition for incubation may have an adaptive advantage over those that do not and may be more resilient to climate change. The moderate microclimate necessary for mound incubation, however, may in some areas be threatened by anthropogenic habitat loss exacerbated by warmer and seasonally drier conditions. As with many avian species, little is known about the capacity of megapodes to adapt to a changing climate. We therefore recommend that future research efforts investigate megapode fecundity, gene flow and genetic connectivity at the population level to better determine their adaptive capacity.


Sign in / Sign up

Export Citation Format

Share Document