Growth models and growing degree-days: assessment of young-of-year Alewife and Blueback Herring in Potomac River tributaries

2020 ◽  
Vol 103 (10) ◽  
pp. 1179-1195
Author(s):  
Samantha B. Alexander ◽  
CJ Carroll Schlick ◽  
Kim de Mutsert
2021 ◽  
Vol 26 (2) ◽  
pp. 160-169
Author(s):  
Ruth Amanda Acero Camelo ◽  
Manuel Ricardo Esteban Molina ◽  
Alfonso Parra Coronado ◽  
Gerhard Fischer ◽  
Juan Evangelista Carulla Fornaguera

In order to estimate the base temperature (Bt) of growth through the appearance of leaves and calculate the phyllochron for kikuyu grass, three plots were established on three farms in the Provincia of Ubaté (Cundinamarca, Colombia) located at different altitudes (2560, 2640, 3143 m. a. s. l.). Measurements were made in four cycles in a period of eight months. The Bt was estimated by the least coefficient of variation method using a second order regression model and the model obtained was validated by the cross-validation method. The Bt values for the first, second, third and fourth leaf were 4.02, 3.68, 3.93, and 3.62 ° C, respectively. For the appearance of the first leaf, the kikuyu required more thermal time (TT) (97.5 accumulated growing degree days (AGDD)) than for the second (74.2 AGDD), third (73.8 AGDD) and fourth leaf (76.0 AGDD) (p<0.05). There were no differences in TT among farms (p> 0.05). There was a tendency to a greater number of days required to reach each leaf stage in the farm located at higher altitude and with lower mean temperature. The validation showed an adequate adjustment (r2 = 0.94) and a substantial concordance (CCC = 0.97) between the observed values and the predicted values for the estimated TT with the Bt value obtained for each leaf stage. The results of Bt for kikuyu grass obtained, will allow to make more precise predictions about the phyllochron and generate growth models close to reality.


2017 ◽  
Vol 4 (03) ◽  
Author(s):  
M. K. Singh ◽  
VINOD KUMAR ◽  
SHAMBHU PRASAD

A field experiment was carried out during the kharif of 2014 and 2015 to evaluate the yield potential, economics and thermal utilization in eleven finger millet varieties under the rainfed condition of the sub-humid environment of South Bihar of Eastern India. Results revealed that the significantly higher grain yield (20.41 q ha-1), net returns (Rs 25301) and B: C ratio (1.51) was with the finger millet variety ‘GPU 67’ but was being at par to ‘GPU28’and ‘RAU-8’, and significantly superior over remaining varieties. The highest heat units (1535.1oC day), helio-thermal units (7519.7oC day hours), phenothermal index (19.4 oC days day-1) were recorded with variety ‘GPU 67’ followed by ‘RAU 8’ and ‘GPU 28’ and lowest in ‘VL 149’ at 50 % anthesis stage. Similarly, the highest growing degree days (2100 oC day), helio-thermal units (11035.8 oC day hours) were noted with ‘GPU 67’ followed by ‘RAU 8’ and ‘GPU 28’ at maturity. The highest heat use efficiency (0.97 kg ha-1 oC day) and helio-thermal use efficiency (0.19 kg ha-1 oC day hour) were in ‘GPU 67’ followed by ‘VL 315’.


2019 ◽  
Vol 33 (6) ◽  
pp. 800-807 ◽  
Author(s):  
Graham W. Charles ◽  
Brian M. Sindel ◽  
Annette L. Cowie ◽  
Oliver G. G. Knox

AbstractField studies were conducted over six seasons to determine the critical period for weed control (CPWC) in high-yielding cotton, using common sunflower as a mimic weed. Common sunflower was planted with or after cotton emergence at densities of 1, 2, 5, 10, 20, and 50 plants m−2. Common sunflower was added and removed at approximately 0, 150, 300, 450, 600, 750, and 900 growing degree days (GDD) after planting. Season-long interference resulted in no harvestable cotton at densities of five or more common sunflower plants m−2. High levels of intraspecific and interspecific competition occurred at the highest weed densities, with increases in weed biomass and reductions in crop yield not proportional to the changes in weed density. Using a 5% yield-loss threshold, the CPWC extended from 43 to 615 GDD, and 20 to 1,512 GDD for one and 50 common sunflower plants m−2, respectively. These results highlight the high level of weed control required in high-yielding cotton to ensure crop losses do not exceed the cost of control.


2015 ◽  
Vol 33 (2) ◽  
pp. 165-173 ◽  
Author(s):  
R.S.O. Lima ◽  
E.C.R. Machado ◽  
A.P.P. Silva ◽  
B.S. Marques ◽  
M.F. Gonçalves ◽  
...  

This work was carried out with the objective of elaborating mathematical models to predict growth and development of purple nutsedge (Cyperus rotundus) based on days or accumulated thermal units (growing degree days). Thus, two independent trials were developed, the first with a decreasing photoperiod (March to July) and the second with an increasing photoperiod (August to November). In each trial, ten assessments of plant growth and development were performed, quantifying total dry matter and the species phenology. After that, phenology was fit to first degree equations, considering individual trials or their grouping. In the same way, the total dry matter was fit to logistic-type models. In all regressions four temporal scales possibilities were assessed for the x axis: accumulated days or growing degree days (GDD) with base temperatures (Tb) of 10, 12 and 15 oC. For both photoperiod conditions, growth and development of purple nutsedge were adequately fit to prediction mathematical models based on accumulated thermal units, highlighting Tb = 12 oC. Considering GDD calculated with Tb = 12 oC, purple nutsedge phenology may be predicted by y = 0.113x, while species growth may be predicted by y = 37.678/(1+(x/509.353)-7.047).


1976 ◽  
Vol 56 (4) ◽  
pp. 901-905 ◽  
Author(s):  
D. G. DORRELL

The effect of seeding date on the chlorogenic acid content of sunflower seed flour was determined by seeding the cultivars Krasnodarets and Peredovik at seven dates, starting on 14 May, over 3 yr. Sequential plantings were made at increments of approximately 70 growing degree days (base = 5.6 C). Plants were harvested at normal field maturity. The time and rate of deposition of chlorogenic acid was determined by harvesting plants at 7-day intervals from 21 to 49 days after flowering. The seeds were dehulled and defatted before determining the chlorogenic acid content of the flour. Chlorogenic acid content declined steadily from an average of 4.22% for the first seeding to 3.30% for the last seeding. About one-half of the total chlorogenic acid was present 21 days after flowering. Deposition continued rapidly for the next 14 days then the level began to stabilize. Delay in seeding tended to shorten the period of vegetative growth and shift the deposition of chlorogenic acid to a cooler portion of the growing season. It is suggested that a combination of these factors caused the reduction in chlorogenic acid content of sunflower flour.


2007 ◽  
Vol 3 (3) ◽  
pp. 499-512 ◽  
Author(s):  
S. Brewer ◽  
J. Guiot ◽  
F. Torre

Abstract. We present here a comparison between the outputs of 25 General Circulation Models run for the mid-Holocene period (6 ka BP) with a set of palaeoclimate reconstructions based on over 400 fossil pollen sequences distributed across the European continent. Three climate parameters were available (moisture availability, temperature of the coldest month and growing degree days), which were grouped together using cluster analysis to provide regions of homogenous climate change. Each model was then investigated to see if it reproduced 1) similar patterns of change and 2) the correct location of these regions. A fuzzy logic distance was used to compare the output of the model with the data, which allowed uncertainties from both the model and data to be taken into account. The models were compared by the magnitude and direction of climate change within the region as well as the spatial pattern of these changes. The majority of the models are grouped together, suggesting that they are becoming more consistent. A test against a set of zero anomalies (no climate change) shows that, although the models are unable to reproduce the exact patterns of change, they all produce the correct signs of change observed for the mid-Holocene.


1971 ◽  
Vol 49 (10) ◽  
pp. 1821-1832 ◽  
Author(s):  
Edward Sucoff

During the 1969 and 1970 growing season buds were collected almost weekly from matched trees in northeastern Minnesota. Cataphyll primordia for the year n + 1 shoot began forming at the time that internodes in the year n shoot started elongating (late April) and continued forming until early September. Primordia for axillary buds started forming about 2 months later and stopped forming at the same time as cataphylls. The size and deposition activity of the apical dome simultaneously increased during the early growing season and decreased during the late season. The maximum rates in July were over nine cataphylls per day.Rate of cataphyll deposition paralleled elongation of the needles on subtending shoots. Forty to fifty percent of the cataphylls had been formed when shoot growth was 95% complete. Although the bulk of the depositions occurred earlier in 1970, when growing degree days were used as the clock, the 2 years were similar.The results provide quantitative data to complement the histologic emphasis of previous studies.


Sign in / Sign up

Export Citation Format

Share Document