Development of a reverse transcription-droplet digital PCR method for absolute quantification of citrus tatter leaf virus

Author(s):  
Jinfa Zhao ◽  
Ying Wang ◽  
Xingkai Zhang ◽  
Ting Zeng ◽  
Yangyang Qin ◽  
...  
2018 ◽  
Vol 164 (3) ◽  
pp. 691-697 ◽  
Author(s):  
Yingjie Liu ◽  
Yingli Wang ◽  
Qin Wang ◽  
Yanhui Zhang ◽  
Wanxia Shen ◽  
...  

Food Control ◽  
2014 ◽  
Vol 46 ◽  
pp. 470-474 ◽  
Author(s):  
Tigst Demeke ◽  
Tom Gräfenhan ◽  
Michelle Holigroski ◽  
Ursla Fernando ◽  
Janice Bamforth ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3507
Author(s):  
Mark A. Ibekwe ◽  
Shelton E. Murinda ◽  
Stanley Park ◽  
Amarachukwu Obayiuwana ◽  
Marcia A. Murry ◽  
...  

E. coli O157:H7 is a foodborne pathogen that constitutes a global threat to human health. However, the quantification of this pathogen in food and environmental samples may be problematic at the low cell numbers commonly encountered in environmental samples. In this study, we used recombinase polymerase amplification (RPA) for the detection of E. coli O157:H7, real-time quantitative PCR (qPCR) for quantification, and droplet digital PCR (ddPCR) for absolute and accurate quantification of E. coli O157:H7 from spiked and environmental samples. Primer and probe sets were used for the detection of stx1 and stx2 using RPA. Genes encoding for stx1, stx2, eae, and rfbE were used to quantify E. coli O157:H7 in the water samples. Furthermore, duplex ddPCR assays were used to quantify the pathogens in these samples. Duplex assay set 1 used stx1 and rfbE genes, while assay set 2 used stx2 and eae genes. Droplet digital PCR was used for the absolute quantification of E. coli O15:H7 in comparison with qPCR for the spiked and environmental samples. The RPA results were compared to those from qPCR and ddPCR in order to assess the efficiency of the RPA compared with the PCR methods. The assays were further applied to the dairy lagoon effluent (DLE) and the high rate algae pond (HRAP) effluent, which were fed with diluted DLE. The RPA detected was <10 CFU/mL, while ddPCR showed quantification from 1 to 104 CFU/mL with a high reproducibility. In addition, quantification by qPCR was from 103 to 107 CFU/mL of the wastewater samples. Therefore, the RPA assay has potential as a point of care tool for the detection of E. coli O157:H7 from different environmental sources, followed by quantification of the target concentrations.


Genes ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 243 ◽  
Author(s):  
Teruaki Tozaki ◽  
Aoi Ohnuma ◽  
Masaki Takasu ◽  
Mio Kikuchi ◽  
Hironaga Kakoi ◽  
...  

Indiscriminate genetic manipulation to improve athletic ability is a major threat to human sports and the horseracing industry, in which methods involving gene-doping, such as transgenesis, should be prohibited to ensure fairness. Therefore, development of methods to detect indiscriminate genetic manipulation are urgently needed. Here, we developed a highly sensitive method to detect horse erythropoietin (EPO) transgenes using droplet digital PCR (ddPCR). We designed two TaqMan probe/primer sets, and the EPO transgene was cloned into a plasmid for use as a model. We extracted the spiked EPO transgene from horse plasma and urine via magnetic beads, followed by ddPCR amplification for absolute quantification and transgene detection. The results indicated high recovery rates (at least ~60% and ~40% in plasma and urine, respectively), suggesting successful detection of the spiked transgene at concentrations of >130 and 200 copies/mL of plasma and urine, respectively. Additionally, successful detection was achieved following intramuscular injection of 20 mg of the EPO transgene. This represents the first study demonstrating a method for detecting the EPO transgene in horse plasma and urine, with our results demonstrating its efficacy for promoting the control of gene-doping in the horseracing industry.


2020 ◽  
Vol 8 (5) ◽  
pp. 701 ◽  
Author(s):  
Raphael Nyaruaba ◽  
Jin Xiong ◽  
Caroline Mwaliko ◽  
Nuo Wang ◽  
Belindah J. Kibii ◽  
...  

Droplet digital PCR (ddPCR) is a third generation of PCR that was recently developed to overcome the challenges of real-time fluorescence-based quantitative PCR (qPCR) in absolute quantification of pathogens. Few studies have been done on tuberculosis (TB) detection and quantification using ddPCR despite its many advantages over qPCR. From the few studies, none explores a single dye duplex assay for the detection and quantification of TB. In this study, steps toward developing and evaluating a duplex single dye (FAM) assay for detecting two targets (IS6110 and IS1081) are clearly described using simplex and duplex experiments. To achieve this, various parameters are investigated, including annealing temperature, primer and probe concentration, sensitivity and specificity, sample concentration, and inter/intra-assay variability. From the results, primer and probe concentration, annealing temperature, and sample concentration have an effect on the position and separation of droplets in both simplex and duplex assays. The copies of target genes in a duplex assay can be estimated accurately using the threshold tool with little inter-assay (CV <1%) and intra-assay (CV <6%) variability when compared to simplex assays. The ddPCR assay specificity and sensitivity are both 100% when compared to qPCR. This work shows steps toward the detection and quantification of two targets in a single channel, enabling higher multiplexing to include more targets in future works.


Sign in / Sign up

Export Citation Format

Share Document