scholarly journals Robust scheduling and dispatching rules for high-mix collaborative manufacturing systems

Author(s):  
Andrea Maria Zanchettin

AbstractMotivated by the increasing demand of mass customisation in production systems, this paper proposes a robust and adaptive scheduling and dispatching method for high-mix human-robot collaborative manufacturing facilities. Scheduling and dispatching rules are derived to optimally track the desired production within the mix, while handling uncertainty in job processing times. The sequencing policy is dynamically adjusted by online forecasting the throughput of the facility as a function of the scheduling and dispatching rules. Numerical verification experiments confirm the possibility to accurately track highly variable production requests, despite the uncertainty of the system.

2021 ◽  
Vol 12 (4) ◽  
pp. 381-400 ◽  
Author(s):  
Norbert Tóth ◽  
Gyula Kulcsár

The paradigm of the cyber-physical manufacturing system is playing an increasingly important role in the development of production systems and management of manufacturing processes. This paper presents an optimization model for solving an integrated problem of production planning and manufacturing control. The goal is to create detailed production plans for a complex manufacturing system and to control the skilled manual workers. The detailed optimization model of the problem and the developed approach and algorithms are described in detail. To consider the impact of human workers performing the manufacturing primary operations, we elaborated an extended simulation-based procedure and new multi-criteria control algorithms that can manage varying availability constraints of parallel workstations, worker-dependent processing times, different product types and process plans. The effectiveness of the proposed algorithms is demonstrated by numerical results based on a case study.


2021 ◽  
Vol 49 (4) ◽  
pp. 842-850
Author(s):  
Luca Caruana ◽  
Emmanuel Francalanza

Technology changes present a constant drive for evolvement in the manufacturing industry. This development has brought about a complete change in the way the industry implements technologies. The complexity of state-of-the-art technologies is on the increase as new and unforeseen perils continue to emerge. One of the main challenges being faced is the adaptation of manufacturing systems to the latest safety and security considerations. The research hypothesis being investigated is that a logically structured procedure incorporating safety and security would be able to assist in designing an ergonomic and collaborative manufacturing system while identifying and analysing risks, eventually establishing feasible solutions for these specific burdens. This paper therefore contributes a methodology which was developed to address issues of safety and security in the design and implementation of cyber-physical production systems in collaborative environments.


2015 ◽  
Vol 135 (6) ◽  
pp. 713-720
Author(s):  
Wan-Ling Li ◽  
Tomohiro Murata ◽  
Muhammad Hafidz Fazli bin Md Fauadi

2021 ◽  
Vol 1 ◽  
pp. 2127-2136
Author(s):  
Olivia Borgue ◽  
John Stavridis ◽  
Tomas Vannucci ◽  
Panagiotis Stavropoulos ◽  
Harry Bikas ◽  
...  

AbstractAdditive manufacturing (AM) is a versatile technology that could add flexibility in manufacturing processes, whether implemented alone or along other technologies. This technology enables on-demand production and decentralized production networks, as production facilities can be located around the world to manufacture products closer to the final consumer (decentralized manufacturing). However, the wide adoption of additive manufacturing technologies is hindered by the lack of experience on its implementation, the lack of repeatability among different manufacturers and a lack of integrated production systems. The later, hinders the traceability and quality assurance of printed components and limits the understanding and data generation of the AM processes and parameters. In this article, a design strategy is proposed to integrate the different phases of the development process into a model-based design platform for decentralized manufacturing. This platform is aimed at facilitating data traceability and product repeatability among different AM machines. The strategy is illustrated with a case study where a car steering knuckle is manufactured in three different facilities in Sweden and Italy.


2019 ◽  
Vol 109 (09) ◽  
pp. 662-666
Author(s):  
M. Chemnitz ◽  
O. Heimann ◽  
A. Vick

Die hohen Anforderungen an moderne Fertigungssysteme erfordern leistungsfähige Engineering-Lösungen. Wie man die Identifikation von Fehlerursachen in komplexen Anlagen erleichtert, wurde in einer Machbarkeitsstudie des Fraunhofer IPK im Auftrag von Siemens DI FA untersucht. In der vorgestellten Lösung werden die Daten der Anlage auf Feldbusebene erfasst und in den digitalen Zwilling eingespeist. So kann das Verhalten der Komponenten taktgenau nachvollzogen werden. Dies elaubt einen tiefen Einblick in das System und unterstützt so bei der Fehlerbehebung.   Powerful engineering tools are required to keep modern production systems manageable. Siemens DI FA and the Fraunhofer IPK present a novel tool for root cause analysis within complex manufacturing systems. The solution combines a CAx plant model with control data recorded from the field bus. This creates a comprehensive digital twin, allowing to analyse past machine behavior with bus clock resolution.


Author(s):  
Guido Vinci Carlavan ◽  
Daniel Alejandro Rossit

Industry 4.0 proposes the incorporation of information technologies at all levels of the production process. By incorporating these technologies, Industry 4.0 provides new tools for production planning processes, allowing to address problems in an innovative and efficient manner. From these technologies and tools, it is that in this work a One-of-a-Kind Production (OKP) process is approached, where the products tend to be highly customized. OKP implies working with a very large variability within production, demanding very efficient planning systems. For this, a planning model based on CONWIP-type strategies was proposed, which seeks to level the production of a shop floor configured in the form of a job shop. Even more, for having a more realistic shop-floor representation, machine failures have been included in the model. In turn, different dispatching rules were proposed to study the performance and analyze the behaviour of the system. From the results obtained, it is observed that, when the production demand is very exigent in relation with the capacity of the system, the dispatching rules that analyze the workload generated by each job tend to perform better. However, when the demand on the capacity of the production system is less intense, the rules associated with due dates are the ones that obtain the best results.


2015 ◽  
Vol 816 ◽  
pp. 536-546
Author(s):  
Vladimír Rudy ◽  
Andrea Lešková

This article deals about the challenges of structural changes in manufacturing conditions. The objective of this paper is to present the modular workstations concept based on miniaturization and re-configurability trends. The article is aimed at problems of designing of production systems with a modular construction structure. The modular structure allows an individual and flexible adaptation to varying requirements but also the realization of low-cost solutions for creation of new or modernized production base. The goal is to present the example of modular workstations solutions that correspond with new designing approach. The specification of basics principles, which should help to designing flexible manufacturing systems, discussed in this paper are: modularity; integrability; convertibility; diagnosability; customization. The theoretical part provides an overview of fundamental design principles in manufacturing structures. In the first part of this article are discussed the specification of basic flexibility types in production system and the main impacts influencing design of manufacturing structures. The closing section of the article provides the specification of example solution of adjustable production platform with modular frame (called desktop factory).


2019 ◽  
Vol 14 (1) ◽  
pp. 232-259 ◽  
Author(s):  
Ata Allah Taleizadeh ◽  
Mahshid Yadegari ◽  
Shib Sankar Sana

Purpose The purpose of this study is to formulate two multi-product single-machine economic production quantity (EPQ) models by considering imperfect products. Two policies are assumed to deal with imperfect products: selling them at discount and applying a reworking process. Design/methodology/approach A screening process is used to identify imperfect items during and after production. Selling the imperfect items at a discount is examined in the first model and the reworking policy in the second model. In both models, demand during the production process is satisfied only by perfect items. Data collected from a case company are used to illustrate the performance of the two models. Moreover, a sensitivity analysis is carried out by varying the most important parameters of the models. Findings The case study in this research is used to demonstrate the applicability of the proposed models, i.e. the EPQ model with salvaging and reworking imperfect items. The models are applied to a high-tech un-plasticized polyvinyl chloride (UPVC) doors and windows manufacturer that produces different types of doors and windows. ROGAWIN Co. is a privately owned company that started in 2001 with fully automatic production lines. Finally, the results of applying the different ways of handling the imperfect items are discussed, along with managerial insights. Originality/value In real-world production systems, manufacturing imperfect products is unavoidable. That is why, it is important to make a proper decision about imperfect products to reduce overall production costs. Recently, applying a reworking strategy has gained the most interest when it comes to handling this problem. The principal idea of this research is to maximize the total profit of manufacturing systems by optimizing the period length under some capacity constraints. The proposed models were applied to a company of manufacturing UPVC doors and windows.


Sign in / Sign up

Export Citation Format

Share Document