scholarly journals Compatibility of Larmor’s Formula with Radiation Reaction for an Accelerated Charge

2015 ◽  
Vol 46 (5) ◽  
pp. 554-574 ◽  
Author(s):  
Ashok K. Singal
Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter observes the reaction force acting on a charge due to the radiation it emits. It also considers the related questions of renormalization and physical interpretation. Modifying the Lorentz equation introduced in Chapter 11 by including a radiation reaction force provides a heuristic method of describing the expected slowing of an accelerated charge in response to the radiation it emits. The chapter then goes on to describe the Abraham–Lorentz–Dirac reaction force, the counter-effect of the radiation of an accelerated charge on its motion. In addition, the chapter shows that a hydrogen atom, this time described by the Thomson model, is unstable in Maxwell theory.


Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1833
Author(s):  
Ashok K. Singal

We examine here the discrepancy between the radiated power, calculated from the Poynting flux at infinity, and the power loss due to radiation reaction for an accelerated charge. It is emphasized that one needs to maintain a clear distinction between the electromagnetic power received by distant observers and the mechanical power loss undergone by the charge. In the literature, both quantities are treated as almost synonymous; the two in general could, however, be quite different. It is shown that in the case of a periodic motion, the two formulations do yield the power loss in a time averaged sense to be the same, even though, the instantaneous rates are quite different. It is demonstrated that the discordance between the two power formulas merely reflects the difference in the power going in self-fields of the charge between the retarded and present times. In particular, in the case of a uniformly accelerated charge, power going into the self-fields at the present time is equal to the power that was going into the self-fields at the retarded time plus the power going in acceleration fields, usually called radiation. From a study of the fields in regions far off from the time retarded positions of the uniformly accelerated charge, it is shown that effectively the fields, including the acceleration fields, remain around the ‘present’ position of the charge which itself is moving toward infinity due to its continuous constant acceleration, with no other Poynting flow that could be termed as ‘radiation emitted’ by the charge.


2012 ◽  
Vol 2012 ◽  
pp. 1-29 ◽  
Author(s):  
Øyvind Grøn

The theory of electrodynamics of radiating charges is reviewed with special emphasis on the role of the Schott energy for the conservation of energy for a charge and its electromagnetic field. It is made clear that the existence of radiation from a charge is not invariant against a transformation between two reference frames that has an accelerated motion relative to each other. The questions whether the existence of radiation from a uniformly accelerated charge with vanishing radiation reaction force is in conflict with the principle of equivalence and whether a freely falling charge radiates are reviewed. It is shown that the resolution of an electromagnetic “perpetuum mobile paradox” associated with a charge moving geodetically along a circular path in the Schwarzschild spacetime requires the so-called tail terms in the equation of motion of a charged particle.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Z. Gong ◽  
F. Mackenroth ◽  
X. Q. Yan ◽  
A. V. Arefiev

AbstractConventionally, friction is understood as a mechanism depleting a physical system of energy and as an unavoidable feature of any realistic device involving moving parts. In this work, we demonstrate that this intuitive picture loses validity in nonlinear quantum electrodynamics, exemplified in a scenario where spatially random friction counter-intuitively results in a highly directional energy flow. This peculiar behavior is caused by radiation friction, i.e., the energy loss of an accelerated charge due to the emission of radiation. We demonstrate analytically and numerically how radiation friction can dramatically enhance the energy gain by electrons from a laser pulse in a strong magnetic field that naturally arises in dense laser-irradiated plasma. We find the directional energy boost to be due to the transverse electron momentum being reduced through friction whence the driving laser can accelerate the electron more efficiently. In the considered example, the energy of the laser-accelerated electrons is enhanced by orders of magnitude, which then leads to highly directional emission of gamma-rays induced by the plasma magnetic field.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Zoltán Tulipánt

AbstractThe Abraham–Lorentz–Dirac theory predicts vanishing radiation reaction for uniformly accelerated charges. However, since an accelerating observer should detect thermal radiation, the charge should be seen absorbing photons in the accelerated frame which, if nothing else occurs, would influence its motion. This means that either there is radiation reaction seen in an inertial frame or there should be an additional phenomenon seen in the accelerated frame countering the effect of absorption. In this paper I rederive the Abraham–Lorentz–Dirac force from quantum electrodynamics, then I study the case of a uniformly accelerated charge. I show that in the accelerated frame, in addition to the absorption of photons due to the Unruh effect there should also be stimulated emission. The net effect of these phenomena on the motion of the charge is found to be zero.


1993 ◽  
Vol 3 (11) ◽  
pp. 2151-2159 ◽  
Author(s):  
Claudia Eberlein

2015 ◽  
Vol 8 (2) ◽  
pp. 2135-2147 ◽  
Author(s):  
C. Y. Lo

General relativity is incomplete since it does not include the gravitational radiation reaction force and the interaction of gravitation with charged particles. General relativity is confusing because Einstein's covariance principle is invalid in physics. Moreover, there is no bounded dynamic solution for the Einstein equation. Thus, Gullstrand is right and the 1993 Nobel Prize for Physics press release is incorrect. Moreover, awards to Christodoulou reflect the blind faith toward Einstein and accumulated errors in mathematics. Note that the Einstein equation with an electromagnetic wave source has no valid solution unless a photonic energy-stress tensor with an anti-gravitational coupling is added. Thus, the photonic energy includes gravitational energy. The existence of anti-gravity coupling implies that the energy conditions in space-time singularity theorems of Hawking and Penrose cannot be satisfied, and thus are irrelevant. Also, the positive mass theorem of Yau and Schoen is misleading, though considered as an achievement by the Fields Medal. E = mc2 is invalid for the electromagnetic energy alone. The discovery of the charge-mass interaction establishes the need for unification of electromagnetism and gravitation and would explain many puzzles. Experimental investigations for further results are important.


Author(s):  
Richard R. Freeman ◽  
James A. King ◽  
Gregory P. Lafyatis

Electromagnetic Radiation is a graduate level book on classical electrodynamics with a strong emphasis on radiation. This book is meant to quickly and efficiently introduce students to the electromagnetic radiation science essential to a practicing physicist. While a major focus is on light and its interactions, topics in radio frequency radiation, x-rays, and beyond are also treated. Special emphasis is placed on applications, with many exercises and homework problems. The format of the book is designed to convey the basic concepts of a topic in the main central text in the book in a mathematically rigorous manner, but with detailed derivations routinely relegated to the accompanying side notes or end of chapter “Discussions.” The book is composed of four parts: Part I is a review of basic E&M, and assumes the reader has a had a good upper division undergraduate course, and while it offers a concise review of topics covered in such a course, it does not treat any given topic in detail; specifically electro- and magnetostatics. Part II addresses the origins of radiation in terms of time variations of charge and current densities within the source, and presents Jefimenko’s field equations as derived from retarded potentials. Part III introduces special relativity and its deep connection to Maxwell’s equations, together with an introduction to relativistic field theory, as well as the relativistic treatment of radiation from an arbitrarily accelerating charge. A highlight of this part is a chapter on the still partially unresolved problem of radiation reaction on an accelerating charge. Part IV treats the practical problems of electromagnetic radiation interacting with matter, with chapters on energy transport, scattering, diffraction and finally an illuminating, application-oriented treatment of fields in confined environments.


Sign in / Sign up

Export Citation Format

Share Document