scholarly journals Implications of a Non-zero Poynting Flux at Infinity Sans Radiation Reaction for a Uniformly Accelerated Charge

2021 ◽  
Vol 51 (4) ◽  
Author(s):  
Ashok K. Singal
Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1833
Author(s):  
Ashok K. Singal

We examine here the discrepancy between the radiated power, calculated from the Poynting flux at infinity, and the power loss due to radiation reaction for an accelerated charge. It is emphasized that one needs to maintain a clear distinction between the electromagnetic power received by distant observers and the mechanical power loss undergone by the charge. In the literature, both quantities are treated as almost synonymous; the two in general could, however, be quite different. It is shown that in the case of a periodic motion, the two formulations do yield the power loss in a time averaged sense to be the same, even though, the instantaneous rates are quite different. It is demonstrated that the discordance between the two power formulas merely reflects the difference in the power going in self-fields of the charge between the retarded and present times. In particular, in the case of a uniformly accelerated charge, power going into the self-fields at the present time is equal to the power that was going into the self-fields at the retarded time plus the power going in acceleration fields, usually called radiation. From a study of the fields in regions far off from the time retarded positions of the uniformly accelerated charge, it is shown that effectively the fields, including the acceleration fields, remain around the ‘present’ position of the charge which itself is moving toward infinity due to its continuous constant acceleration, with no other Poynting flow that could be termed as ‘radiation emitted’ by the charge.


2016 ◽  
Vol 82 (4) ◽  
Author(s):  
Martin Lemoine

Successful phenomenological models of pulsar wind nebulae assume efficient dissipation of the Poynting flux of the magnetized electron–positron wind as well as efficient acceleration of the pairs in the vicinity of the termination shock, but how this is realized is not yet well understood. This paper suggests that the corrugation of the termination shock, at the onset of nonlinearity, may lead towards the desired phenomenology. Nonlinear corrugation of the termination shock would convert a fraction of order unity of the incoming ordered magnetic field into downstream turbulence, slowing down the flow to sub-relativistic velocities. The dissipation of turbulence would further preheat the pair population on short length scales, close to equipartition with the magnetic field, thereby reducing the initial high magnetization to values of order unity. Furthermore, it is speculated that the turbulence generated by the corrugation pattern may sustain a relativistic Fermi process, accelerating particles close to the radiation reaction limit, as observed in the Crab nebula. The required corrugation could be induced by the fast magnetosonic modes of downstream nebular turbulence; but it could also be produced by upstream turbulence, either carried by the wind or seeded in the precursor by the accelerated particles themselves.


2019 ◽  
Vol 491 (1) ◽  
pp. L46-L50 ◽  
Author(s):  
J Pétri

ABSTRACT Force-free neutron star magnetospheres are nowadays well known and found through numerical simulations. Even extension to general relativity has recently been achieved. However, those solutions are by definition dissipationless, meaning that the star is unable to accelerate particles and let them radiate any photon. Interestingly, the force-free model has no free parameter however it must be superseded by a dissipative mechanism within the plasma. In this Letter, we investigate the magnetosphere electrodynamics for particles moving in the radiation reaction regime, using the limit where acceleration is fully balanced by radiation, also called Aristotelian dynamics. An Ohm’s law is derived, from which the dissipation rate is controlled by a one parameter family of solutions depending on the pair multiplicity κ. The spatial extension of the dissipation zone is found self-consistently from the simulations. We show that the radiative magnetosphere of an aligned rotator tends to the force-free regime whenever the pair multiplicity becomes moderately large, κ ≫ 1. However, for low multiplicity, a substantial fraction of the spin-down energy goes into particle acceleration and radiation in addition to the Poynting flux, the latter remaining only dominant for large multiplicities. We show that the work done on the plasma occurs predominantly in the equatorial current sheet right outside the light-cylinder.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter observes the reaction force acting on a charge due to the radiation it emits. It also considers the related questions of renormalization and physical interpretation. Modifying the Lorentz equation introduced in Chapter 11 by including a radiation reaction force provides a heuristic method of describing the expected slowing of an accelerated charge in response to the radiation it emits. The chapter then goes on to describe the Abraham–Lorentz–Dirac reaction force, the counter-effect of the radiation of an accelerated charge on its motion. In addition, the chapter shows that a hydrogen atom, this time described by the Thomson model, is unstable in Maxwell theory.


2012 ◽  
Vol 2012 ◽  
pp. 1-29 ◽  
Author(s):  
Øyvind Grøn

The theory of electrodynamics of radiating charges is reviewed with special emphasis on the role of the Schott energy for the conservation of energy for a charge and its electromagnetic field. It is made clear that the existence of radiation from a charge is not invariant against a transformation between two reference frames that has an accelerated motion relative to each other. The questions whether the existence of radiation from a uniformly accelerated charge with vanishing radiation reaction force is in conflict with the principle of equivalence and whether a freely falling charge radiates are reviewed. It is shown that the resolution of an electromagnetic “perpetuum mobile paradox” associated with a charge moving geodetically along a circular path in the Schwarzschild spacetime requires the so-called tail terms in the equation of motion of a charged particle.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Z. Gong ◽  
F. Mackenroth ◽  
X. Q. Yan ◽  
A. V. Arefiev

AbstractConventionally, friction is understood as a mechanism depleting a physical system of energy and as an unavoidable feature of any realistic device involving moving parts. In this work, we demonstrate that this intuitive picture loses validity in nonlinear quantum electrodynamics, exemplified in a scenario where spatially random friction counter-intuitively results in a highly directional energy flow. This peculiar behavior is caused by radiation friction, i.e., the energy loss of an accelerated charge due to the emission of radiation. We demonstrate analytically and numerically how radiation friction can dramatically enhance the energy gain by electrons from a laser pulse in a strong magnetic field that naturally arises in dense laser-irradiated plasma. We find the directional energy boost to be due to the transverse electron momentum being reduced through friction whence the driving laser can accelerate the electron more efficiently. In the considered example, the energy of the laser-accelerated electrons is enhanced by orders of magnitude, which then leads to highly directional emission of gamma-rays induced by the plasma magnetic field.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Zoltán Tulipánt

AbstractThe Abraham–Lorentz–Dirac theory predicts vanishing radiation reaction for uniformly accelerated charges. However, since an accelerating observer should detect thermal radiation, the charge should be seen absorbing photons in the accelerated frame which, if nothing else occurs, would influence its motion. This means that either there is radiation reaction seen in an inertial frame or there should be an additional phenomenon seen in the accelerated frame countering the effect of absorption. In this paper I rederive the Abraham–Lorentz–Dirac force from quantum electrodynamics, then I study the case of a uniformly accelerated charge. I show that in the accelerated frame, in addition to the absorption of photons due to the Unruh effect there should also be stimulated emission. The net effect of these phenomena on the motion of the charge is found to be zero.


1993 ◽  
Vol 3 (11) ◽  
pp. 2151-2159 ◽  
Author(s):  
Claudia Eberlein

Sign in / Sign up

Export Citation Format

Share Document