Analysis of Stress Removal Effect of Borehole Depth and Position on Coal-Rock with Shock Tendency

2020 ◽  
Vol 38 (4) ◽  
pp. 4099-4109
Author(s):  
Chao Peng ◽  
Wanrong Liu
Keyword(s):  
2018 ◽  
Vol 11 ◽  
pp. 39-45 ◽  
Author(s):  
S.N. Reshetnyak ◽  
◽  
Yu.M. Maksimenko ◽  
Keyword(s):  

Author(s):  
M. S. Bugaeva ◽  
O. I. Bondarev ◽  
N. N. Mikhailova ◽  
L. G. Gorokhova

Introduction. The impact on the body of such factors of the production environment as coal-rock dust and fluorine compounds leads to certain shift s in strict indicators of homeostasis at the system level. Maintaining the relative constancy of the internal environment of the body is provided by the functional consistency of all organs and systems, the leading of which is the liver. Organ repair plays a crucial role in restoring the structure of genetic material and maintaining normal cell viability. When this mechanism is damaged, the compensatory capabilities of the organ are disrupted, homeostasis is disrupted at the cellular and organizational levels, and the development of the main pathological processes is noted.The aim of the study is to compare the morphological mechanisms of maintaining structural homeostasis of the liver in the dynamics of the impact on the body of coal-rock dust and sodium fluoride.Materials and methods. Experimental studies were conducted on adult white male laboratory rats. Features of morphological mechanisms for maintaining structural homeostasis of the liver in the dynamics of exposure to coal-rock dust and sodium fluoride were studied on experimental models of pneumoconiosis and fluoride intoxication. For histological examination in experimental animals, liver sampling was performed after 1, 3, 6, 9, 12 weeks of the experiment.Results. The specificity of morphological changes in the liver depending on the harmful production factor was revealed. It is shown that chronic exposure to coal-rock dust and sodium fluoride is characterized by the development of similar morphological changes in the liver and its vessels from the predominance of the initial compensatory-adaptive to pronounced violations of the stromal and parenchymal components. Long-term inhalation of coal-rock dust at 1–3 weeks of seeding triggers adaptive mechanisms in the liver in the form of increased functional activity of cells, formation of double-core hepatocytes, activation of immunocompetent cells and endotheliocytes, ensuring the preservation of the parenchyma and the general morphostructure of the organ until the 12th week of the experiment. Exposure to sodium fluoride leads to early disruption of liver compensatory mechanisms and the development of dystrophic changes in the parenchyma with the formation of necrosis foci as early as the 6th week of the experiment.Conclusions. The study of mechanisms for compensating the liver structure in conditions of long-term exposure to coal-rock dust and sodium fluoride, as well as processes that indicate their failure, and the timing of their occurrence, is of theoretical and practical importance for developing recommendations for the timely prevention and correction of pathological conditions developing in employees of the aluminum and coal industry.The authors declare no conflict of interests.


Author(s):  
А. Molodetskyy ◽  
◽  
О. Gladkaya ◽  
V. Slyusarev ◽  
◽  
...  

2013 ◽  
Vol 6 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Ai Chi ◽  
Li Yuwei

Coal body is a type of fractured rock mass in which lots of cleat fractures developed. Its mechanical properties vary with the parametric variation of coal rock block, face cleat and butt cleat. Based on the linear elastic theory and displacement equivalent principle and simplifying the face cleat and butt cleat as multi-bank penetrating and intermittent cracks, the model was established to calculate the elastic modulus and Poisson's ratio of coal body combined with cleat. By analyzing the model, it also obtained the influence of the parameter variation of coal rock block, face cleat and butt cleat on the elastic modulus and Poisson's ratio of the coal body. Study results showed that the connectivity rate of butt cleat and the distance between face cleats had a weak influence on elastic modulus of coal body. When the inclination of face cleat was 90°, the elastic modulus of coal body reached the maximal value and it equaled to the elastic modulus of coal rock block. When the inclination of face cleat was 0°, the elastic modulus of coal body was exclusively dependent on the elastic modulus of coal rock block, the normal stiffness of face cleat and the distance between them. When the distance between butt cleats or the connectivity rate of butt cleat was fixed, the Poisson's ratio of the coal body initially increased and then decreased with increasing of the face cleat inclination.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1928 ◽  
Author(s):  
Faham Tahmasebinia ◽  
Chengguo Zhang ◽  
Ismet Canbulat ◽  
Samad Sepasgozar ◽  
Serkan Saydam

Coal burst occurrences are affected by a range of mining and geological factors. Excessive slipping between the strata layers may release a considerable amount of strain energy, which can be destructive. A competent strata is also more vulnerable to riveting a large amount of strain energy. If the stored energy in the rigid roof reaches a certain level, it will be released suddenly which can create a serious dynamic reaction leading to coal burst incidents. In this paper, a new damage model based on the modified thermomechanical continuum constitutive model in coal mass and the contact layers between the rock and coal mass is proposed. The original continuum constitutive model was initially developed for the cemented granular materials. The application of the modified continuum constitutive model is the key aspect to understand the momentum energy between the coal–rock interactions. The transformed energy between the coal mass and different strata layers will be analytically demonstrated as a function of the rock/joint quality interaction conditions. The failure and post failure in the coal mass and coal–rock joint interaction will be classified by the coal mass crushing, coal–rock interaction damage and fragment reorganisation. The outcomes of this paper will help to forecast the possibility of the coal burst occurrence based on the interaction between the coal mass and the strata layers in a coal mine.


2021 ◽  
Vol 111 ◽  
pp. 102853
Author(s):  
Xiankai Bao ◽  
Junyu Guo ◽  
Yuan Liu ◽  
Gang Zhao ◽  
Jiaxing Cao ◽  
...  

2021 ◽  
Vol 14 (15) ◽  
Author(s):  
Zhongzhong Liu ◽  
Hanpeng Wang ◽  
Su Wang ◽  
Yang Xue ◽  
Chong Zhang

Sign in / Sign up

Export Citation Format

Share Document