Investigation of El Niño and La Niña effects and the impact of Atlantic sea surface temperatures (SSTs), on precipitation in Nigeria from 1950 to 1992

2006 ◽  
Vol 27 (5) ◽  
pp. 545-555 ◽  
Author(s):  
F. N. Okeke ◽  
J. A. Marengo ◽  
C. Nobre
2012 ◽  
Vol 25 (18) ◽  
pp. 6375-6382 ◽  
Author(s):  
Jennifer L. Catto ◽  
Neville Nicholls ◽  
Christian Jakob

Abstract Aspects of the climate of Australia are linked to interannual variability of the sea surface temperatures (SSTs) to the north of the country. SST anomalies in this region have been shown to exhibit strong, seasonally varying links to ENSO and tropical Pacific SSTs. Previously, the models participating in phase 3 of the Coupled Model Intercomparison Project (CMIP3) have been evaluated and found to vary in their abilities to represent both the seasonal cycle of correlations between the Niño-3.4 and north Australian SSTs and the evolution of SSTs during composite El Niño and La Niña events. In this study, the new suite of models participating in the CMIP5 is evaluated using the same method. In the multimodel mean, the representation of the links is slightly improved, but generally the models do not capture the strength of the negative correlations during the second half of the year. The models also still struggle to capture the SST evolution in the north Australian region during El Niño and La Niña events.


2010 ◽  
Vol 67 (9) ◽  
pp. 2854-2870 ◽  
Author(s):  
Tingting Gong ◽  
Steven B. Feldstein ◽  
Dehai Luo

Abstract This study examines the relationship between intraseasonal southern annular mode (SAM) events and the El Niño–Southern Oscillation (ENSO) using daily 40-yr ECMWF Re-Analysis (ERA-40) data. The data coverage spans the years 1979–2002, for the austral spring and summer seasons. The focus of this study is on the question of why positive SAM events dominate during La Niña and negative SAM events during El Niño. A composite analysis is performed on the zonal-mean zonal wind, Eliassen–Palm fluxes, and two diagnostic variables: the meridional potential vorticity gradient, a zonal-mean quantity that is used to estimate the likelihood of wave breaking, and the wave breaking index (WBI), which is used to evaluate the strength of the wave breaking. The results of this investigation suggest that the background zonal-mean flow associated with La Niña (El Niño) is preconditioned for strong (weak) anticyclonic wave breaking on the equatorward side of the eddy-driven jet, the type of wave breaking that is found to drive positive (negative) SAM events. A probability density function analysis of the WBI, for both La Niña and El Niño, indicates that strong anticyclonic wave breaking takes place much more frequently during La Niña and weak anticyclonic wave breaking during El Niño. It is suggested that these wave breaking characteristics, and their dependency on the background flow, can explain the strong preference for SAM events of one phase during ENSO. The analysis also shows that austral spring SAM events that coincide with ENSO are preceded by strong stratospheric SAM anomalies and then are followed by a prolonged period of wave breaking that lasts for approximately 30 days. These findings suggest that the ENSO background flow also plays a role in the excitation of stratospheric SAM anomalies and that the presence of these stratospheric SAM anomalies in turn excites and then maintains the tropospheric SAM anomalies via a positive eddy feedback.


2022 ◽  
Author(s):  
Paul C. Rivera

An alternative physical mechanism is proposed to describe the occurrence of the episodic El Nino Southern Oscillation (ENSO) and La Nina climatic phenomena. This is based on the earthquake-perturbed obliquity change (EPOCH) model previously discovered as a major cause of the global climate change problem. Massive quakes impart a very strong oceanic force that can move the moon which in turn pulls the earth’s axis and change the planetary obliquity. Analysis of the annual geomagnetic north-pole shift and global seismic data revealed this previously undiscovered force. Using a higher obliquity in the global climate model EdGCM and constant greenhouse gas forcing showed that the seismic-induced polar motion and associated enhanced obliquity could be the major mechanism governing the mysterious climate anomalies attributed to El Nino and La Nina cycles.


Author(s):  
Arini Wahyu Utami ◽  
Jamhari Jamhari ◽  
Suhatmini Hardyastuti

Paddy and maize are two important food crops in Indonesia and mainly produced in Java Island. This research aimed to know the impact of El Nino and La Nina on paddy and maize farmer’s supply in Java. Cross sectional data from four provinces in Java was combined with time series data during 1987-2006. Paddy supply was estimated using log model, while maize supply used autoregressive model; each was estimated using two types of regression function. First, it included dummy variable of El Nino and La Nina to know their influence into paddy and maize supply. Second, Southern Oscillation Index was used to analyze the supply changing when El Nino or La Nina occur. The result showed that El Nino and La Nina did not influence paddy supply, while La Nina influenced maize supply in Java. Maize supply increased when La Nina occurred.


tamh tm iedor sphere -1 el 9a8 ti 0vse , lyc li s m im a p te le models. Much more detailed than in the Australian region (Simpson and Downey 1975; run. Rather they are models than simp allysofomuuscehdm ro ourte in eelxypesn in si cvee th to e V ha osicbe ee anndfoH rc uendt 198 recasting El Nino behav­ tures for the p w er iitohd4o ). bsT1eh rv e BMRC climate model iour (e.g., sea surface temperatures in the east simulated by the model ha 9s49e -d 9 1 se , aasnud rf ac th eet em ra p in efraal ­ lfeoqrueactaosrti al r Pacific), they could, in theory, be used to ob been compared with the coupling o ai fnftahleloacnedantetmoptehrea tu artemoosvpehre re la nidn . th Tehseew te asse rv ru end ra fiinvfea ll t i ( m Fr eesd , er w ik istehne th teal. s1a9m9e5 ). seTahesm ur o fa dceelmmo od deellss , ( hPoowweevrere , tis less than perfect. Improved ocean ph m er p ic e ra ctoun re d s it io bnust . s T li h ghtly different starting atmos­ these coupled mode alls . . 1995) are being developed for ialg lu rseterm ate esnttw he it h ‘ noobisseer ’ veind iffe ed rtahier ence betw nfa m ll, o w de e l . neTeoenge th t e ed to av mru uns O era cghep se aarsto ne pro onfalthperebd le ic m ti own it ihstthheeduisfef ic oufltcy oupled models in all five runs as an ‘ens coupled models has in sitmhue la attim ng osrp ai hnefrailclA of u st p ra rleicainpp it raetc io ip n i tat sihoon, w em abtls le’. eoam st e The en o ve srkin ll sem o rt ihne bl sei ave rn Amuusl rag t a ra ti lnegsgoennte he ia. (Ni ra l sp su a c ti caelsssca in le ssiimmuploartt in an gtaftomrousspeh rs e , ridcesvpairtieab th il e it iyr Fur T th h e es resoau tm th o , stphheem ri odels are less successful. sea cshuo rf l a ls ce1t9e9m6p ) e . ra M tu ordeealneoxmpaelriiemsehnatvsewailtohngspheicsitfo ie ry djtohb er e o fo f re si m pr uolbaa ti bnlgyc th cemSoOdIel ( eFx ig pe urrieme3n .3 ts ) . do ThaegSoO od I an be predicted without the need

Droughts ◽  
2016 ◽  
pp. 77-77

2015 ◽  
Vol 42 (21) ◽  
pp. 9449-9456 ◽  
Author(s):  
Peter van Rensch ◽  
Ailie J. E. Gallant ◽  
Wenju Cai ◽  
Neville Nicholls

2016 ◽  
Vol 29 (4) ◽  
pp. 1391-1415 ◽  
Author(s):  
Wei Zhang ◽  
Gabriel A. Vecchi ◽  
Hiroyuki Murakami ◽  
Thomas Delworth ◽  
Andrew T. Wittenberg ◽  
...  

Abstract This study aims to assess whether, and the extent to which, an increase in atmospheric resolution of the Geophysical Fluid Dynamics Laboratory (GFDL) Forecast-Oriented Low Ocean Resolution version of CM2.5 (FLOR) with 50-km resolution and the High-Resolution FLOR (HiFLOR) with 25-km resolution improves the simulation of the El Niño–Southern Oscillation (ENSO)–tropical cyclone (TC) connections in the western North Pacific (WNP). HiFLOR simulates better ENSO–TC connections in the WNP including TC track density, genesis, and landfall than FLOR in both long-term control experiments and sea surface temperature (SST)- and sea surface salinity (SSS)-restoring historical runs (1971–2012). Restoring experiments are performed with SSS and SST restored to observational estimates of climatological SSS and interannually varying monthly SST. In the control experiments of HiFLOR, an improved simulation of the Walker circulation arising from more realistic SST and precipitation is largely responsible for its better performance in simulating ENSO–TC connections in the WNP. In the SST-restoring experiments of HiFLOR, more realistic Walker circulation and steering flow during El Niño and La Niña are responsible for the improved simulation of ENSO–TC connections in the WNP. The improved simulation of ENSO–TC connections with HiFLOR arises from a better representation of SST and better responses of environmental large-scale circulation to SST anomalies associated with El Niño or La Niña. A better representation of ENSO–TC connections in HiFLOR can benefit the seasonal forecasting of TC genesis, track, and landfall; improve understanding of the interannual variation of TC activity; and provide better projection of TC activity under climate change.


Sign in / Sign up

Export Citation Format

Share Document