Lake ecosystem effects associated with top-predator removal due to selenium toxicity

Hydrobiologia ◽  
2010 ◽  
Vol 655 (1) ◽  
pp. 137-148 ◽  
Author(s):  
Robert A. Browne ◽  
David Lutz
2020 ◽  
Vol 641 ◽  
pp. 145-157 ◽  
Author(s):  
CS Sherman ◽  
MR Heupel ◽  
SK Moore ◽  
A Chin ◽  
CA Simpfendorfer

Shark abundances are decreasing on many coral reefs, but the ecosystem effects of this loss are poorly understood. Rays are a prevalent mesopredator in tropical coral reef ecosystems that are preyed upon by top predators like sharks. Studies have suggested reduced predator abundances lead to increases in mesopredator abundance (mesopredator release). We examined the relationship between top predator abundances and the abundance and behaviour of 2 small benthic ray genera using baited remote underwater video systems (BRUVS) across 6 countries. Where predators were more abundant, 2 genera of small benthic rays were sighted less often, possibly because of lower abundances. Small ray behaviour was also significantly affected by predator abundance. Individuals of focal ray species visited BRUVS significantly fewer times at sites with higher predator abundances. Where predators were less abundant, rays spent significantly more time in the video frame, and were more likely to feed from bait bags. In addition to predator abundance, small ray presence was significantly influenced by reef relief and depth. Neotrygon spp. were more abundant on deeper, lower relief habitats, while Taeniura spp. were more prevalent in reef-associated shallow, high relief habitats. Overall, this study found that predator abundance had a significant effect on small benthic ray abundance and behaviour in the presence of BRUVS. Results demonstrate that changes in both abundance and behaviour associated with predator loss may make the interpretation of phenomenon like mesopredator release more difficult to identify unless behavioural effects are considered.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Michelle L. Stantial ◽  
Jonathan B. Cohen ◽  
Abigail J. Darrah ◽  
Shannon L. Farrell ◽  
Brooke Maslo

2018 ◽  
Vol 5 (8) ◽  
pp. 180465
Author(s):  
Silva Uusi-Heikkilä ◽  
Tommi Perälä ◽  
Anna Kuparinen

Fish stocking is used worldwide in conservation and management, but its effects on food-web dynamics and ecosystem stability are poorly known. To better understand these effects and predict the outcomes of stocking, we used an empirically validated network model of a well-studied lake ecosystem. We simulate two stocking scenarios with two native fish species valuable for fishing. In the first scenario, we stock planktivorous fish (whitefish) larvae in the ecosystem. This leads to a 1% increase in adult whitefish biomasses and decreases the biomasses of the top predator (perch). In the second scenario, we also stock perch larvae in the ecosystem. This decreases the planktivorous whitefish and the oldest top predator age class biomasses, and destabilizes the ecosystem. Our results demonstrate that the effects of stocking depend on the species' position in the food web and thus cannot be assessed without considering interacting species. We further show that stocking can lead to undesired outcomes from both management and conservation perspectives. The gains of stocking can remain minor and have adverse effects on the entire ecosystem.


2020 ◽  
Vol 37 (3) ◽  
pp. 351-363
Author(s):  
Michel Iskin da S Costa ◽  
Lucas Dos Anjos

Abstract In food webs, fishery can play the role of top predator, competing thus with other top predators for valuable food resources. In this view, it has been claimed in fisheries management that culling of top predators can be a means to improve fishery yield. To investigate this hypothesis, we use theoretical population models to assess in a multispecies context how fishery yield from target species harvest responds to top predator cull. Defying crisp summary, the four analysed food web models show that this response may be either positive or negative or both, indicating that in terms of multispecies fishery management the harvest yield may not accrue as a consequence of predator removal. In addition, this multitude of behaviours points also to the fact that the response of fishery yield to top predator cull may be difficult to assess.


Author(s):  
Linda Sicko-Goad

Although the use of electron microscopy and its varied methodologies is not usually associated with ecological studies, the types of species specific information that can be generated by these techniques are often quite useful in predicting long-term ecosystem effects. The utility of these techniques is especially apparent when one considers both the size range of particles found in the aquatic environment and the complexity of the phytoplankton assemblages.The size range and character of organisms found in the aquatic environment are dependent upon a variety of physical parameters that include sampling depth, location, and time of year. In the winter months, all the Laurentian Great Lakes are uniformly mixed and homothermous in the range of 1.1 to 1.7°C. During this time phytoplankton productivity is quite low.


2012 ◽  
Vol 449 ◽  
pp. 27-40 ◽  
Author(s):  
J Näslund ◽  
GS Samuelsson ◽  
JS Gunnarsson ◽  
FJA Nascimento ◽  
HC Nilsson ◽  
...  

2015 ◽  
Vol 526 ◽  
pp. 169-181 ◽  
Author(s):  
M Bedford ◽  
J Melbourne-Thomas ◽  
S Corney ◽  
T Jarvis ◽  
N Kelly ◽  
...  
Keyword(s):  

2020 ◽  
Vol 637 ◽  
pp. 59-69 ◽  
Author(s):  
J Sullivan-Stack ◽  
BA Menge

Top predator decline has been ubiquitous across systems over the past decades and centuries, and predicting changes in resultant community dynamics is a major challenge for ecologists and managers. Ecological release predicts that loss of a limiting factor, such as a dominant competitor or predator, can release a species from control, thus allowing increases in its size, density, and/or distribution. The 2014 sea star wasting syndrome (SSWS) outbreak decimated populations of the keystone predator Pisaster ochraceus along the Oregon coast, USA. This event provided an opportunity to test the predictions of ecological release across a broad spatial scale and determine the role of competitive dynamics in top predator recovery. We hypothesized that after P. ochraceus loss, populations of the subordinate sea star Leptasterias sp. would grow larger, more abundant, and move downshore. We based these predictions on prior research in Washington State showing that Leptasterias sp. competed with P. ochraceus for food. Further, we predicted that ecological release of Leptasterias sp. could provide a bottleneck to P. ochraceus recovery. Using field surveys, we found no clear change in density or distribution in Leptasterias sp. populations post-SSWS, and decreases in body size. In a field experiment, we found no evidence of competition between similar-sized Leptasterias sp. and P. ochraceus. Thus, the mechanisms underlying our predictions were not in effect along the Oregon coast, which we attribute to differences in habitat overlap and food availability between the 2 regions. Our results suggest that response to the loss of a dominant competitor can be unpredictable even when based in theory and previous research.


ABSTRACT The ecosystem services provided by wetlands can be direct or indirect. The direct services can be mostly valued through market prices, but the indirect service like aesthetic beauty and its impact on property prices surrounding the natural resource cannot be directly measured. To single out the economic effect of particular amenity which influenced the land property prices, the advanced valuation technique Hedonic property pricing was most popularly used. In this study, it was attempted to assess using the hedonic property pricing technique, the impact of the presence of the freshwater body, the Vellayani Lake on land property prices surrounding it. The results revealed that the marginal implicit price of getting one cent of land with lake view evaluated at mean property price of Rs. 2,44250 was Rs.79171. The total aesthetic value of land with the scenic beauty of the lake was Rs. 275.92 crores.


Sign in / Sign up

Export Citation Format

Share Document