The food web positioning and trophic niche of the non-indigenous round goby: a comparison between two Baltic Sea populations

Hydrobiologia ◽  
2018 ◽  
Vol 822 (1) ◽  
pp. 111-128 ◽  
Author(s):  
Heidi Herlevi ◽  
Katri Aarnio ◽  
Riikka Puntila-Dodd ◽  
Erik Bonsdorff
Keyword(s):  
Food Web ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrea Parimuchová ◽  
Lenka Petráková Dušátková ◽  
Ľubomír Kováč ◽  
Táňa Macháčková ◽  
Ondřej Slabý ◽  
...  

AbstractTrophic interactions of cave arthropods have been understudied. We used molecular methods (NGS) to decipher the food web in the subterranean ecosystem of the Ardovská Cave (Western Carpathians, Slovakia). We collected five arthropod predators of the species Parasitus loricatus (gamasid mites), Eukoenenia spelaea (palpigrades), Quedius mesomelinus (beetles), and Porrhomma profundum and Centromerus cavernarum (both spiders) and prey belonging to several orders. Various arthropod orders were exploited as prey, and trophic interactions differed among the predators. Linear models were used to compare absolute and relative prey body sizes among the predators. Quedius exploited relatively small prey, while Eukoenenia and Parasitus fed on relatively large prey. Exploitation of eggs or cadavers is discussed. In contrast to previous studies, Eukoenenia was found to be carnivorous. A high proportion of intraguild predation was found in all predators. Intraspecific consumption (most likely cannibalism) was detected only in mites and beetles. Using Pianka’s index, the highest trophic niche overlaps were found between Porrhomma and Parasitus and between Centromerus and Eukoenenia, while the lowest niche overlap was found between Parasitus and Quedius. Contrary to what we expected, the high availability of Diptera and Isopoda as a potential prey in the studied system was not corroborated. Our work demonstrates that intraguild diet plays an important role in predators occupying subterranean ecosystems.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 195
Author(s):  
Qiang Qin ◽  
Fubin Zhang ◽  
Fei Liu ◽  
Chunling Wang ◽  
Huanzhang Liu

Understanding energy flow and nutrient pathways is crucial to reveal the dynamics and functions of riverine ecosystems and develop appropriate conservation strategies. In this study, we utilized stable isotopes of δ13C and δ15N to examine the fundamental characteristics of trophic position, trophic niche, and carbon source for the food web in the midstream of the Chishui River, a tributary to the Yangtze River. Our results showed that stable isotope signatures among different sorts of basal resources and consumers were significantly distinguishable and that the food chain consisted of four trophic levels, indicating the multiple trophic pathways and long food chain length here. The trophic guilds of fish were classified into four categories, in which herbivorous and carnivorous fish showed greater trophic diversity and omnivorous fish had higher trophic redundancy, which meant that there was a stable trophic niche structure in the study area. Phytoplankton and periphyton presented the largest contributions to consumers, indicating that autochthonous productivity was the dominant carbon source in the midstream of the Chishui River. Since the Chishui River is still in a natural condition without any dam constructions, the autochthonous productivity, stable trophic niche structure, multiple trophic pathways and long food chain length found here demonstrate its high conservation value. Therefore, the strategy to refrain from damming on this river should persist into the future.


Author(s):  
Artūras Skabeikis ◽  
Jūratė Lesutienė

AbstractFeeding activity and diet composition of round goby were investigated in the south-eastern Baltic Sea, the Lithuanian coastal waters during May-October 2012 in order to determine main feeding objects and seasonal periods when native fauna could be most affected by predation of this highly invasive species. In total, prey represented by 18 taxa was found in the gut contents of dissected fish. Feeding activity of round goby varied depending on the body size, sex and stage of the reproduction period. The gut contents of < 50 mm specimens were dominated by zooplanktonic and meiobenthic organisms, whereas larger individuals (50–99 mm) shifted to amphipods and mollusks. Individuals of the intermediate 100-200 mm length had a variable diet, changing depending on the season; in spring they mostly preyed on Macoma balthica, in summer − on polychaetes, while in autumn the contribution of Mytilus trossulus and fish considerably increased in their diet. Diet composition of individuals ≥ 200 mm was relatively constant in the course of the study with substantial preference to M. balthica. These findings imply that benthic fauna, particularly a newly settled generation of epibenthic mollusks in autumn is under strong predatory pressure of the round goby.


2016 ◽  
Vol 11 (3) ◽  
pp. 327-335 ◽  
Author(s):  
Meagan Schrandt ◽  
Laura Stone ◽  
Brian Klimek ◽  
Saara Mäkelin ◽  
Kenneth Heck Jr. ◽  
...  

2003 ◽  
Vol 60 (5) ◽  
pp. 939-950 ◽  
Author(s):  
Chris J Harvey ◽  
Sean P Cox ◽  
Timothy E Essington ◽  
Sture Hansson ◽  
James F Kitchell

Abstract Because fisheries operate within a complex array of species interactions, scientists increasingly recommend multispecies approaches to fisheries management. We created a food web model for the Baltic Sea proper, using the Ecopath with Ecosim software, to evaluate interactions between fisheries and the food web from 1974 to 2000. The model was based largely on values generated by multispecies virtual population analysis (MSVPA). Ecosim outputs closely reproduced MSVPA biomass estimates and catch data for sprat (Sprattus sprattus), herring (Clupea harengus), and cod (Gadus morhua), but only after making adjustments to cod recruitment, to vulnerability to predation of specific species, and to foraging times. Among the necessary adjustments were divergent trophic relationships between cod and clupeids: cod exhibited top-down control on sprat biomass, but had little influence on herring. Fishing, the chief source of mortality for cod and herring, and cod reproduction, as driven by oceanographic conditions as well as unexplained variability, were also key structuring forces. The model generated many hypotheses about relationships between key biota in the Baltic Sea food web and may ultimately provide a basis for estimating community responses to management actions.


2008 ◽  
Vol 65 (10) ◽  
pp. 2191-2200 ◽  
Author(s):  
Christopher T. Solomon ◽  
Stephen R. Carpenter ◽  
James A. Rusak ◽  
M. Jake Vander Zanden

Carbon and nitrogen stable isotope ratios are increasingly used to study long-term food web change. Temporal variation at the base of the food web may impact the accuracy of trophic niche estimates, but data describing interannual baseline variation are limited. We quantified baseline variation over a 23-year period in a north-temperate lake and used a simulation model to examine how this variation might affect consumer trophic niche estimates. Interannual variation in C and N stable isotope ratios was significant for both benthic and pelagic primary consumer baselines. Long-term linear trends and shorter-term autoregressive patterns were apparent in the data. There were no correlations among benthic and pelagic C and N baselines. Simulations demonstrated that error in estimated fish trophic niches, but not bias, increased substantially when sampling of baselines was incomplete. Accurate trophic niche estimates depended more on accurate estimation of baseline time series than on accurate estimation of growth and turnover rates. These results highlight the importance of previous and continued efforts to constrain bias and error in long-term stable isotope food web studies.


2002 ◽  
Vol 4 (6) ◽  
pp. 929-941 ◽  
Author(s):  
Jerzy Falandysz ◽  
Barbara Wyrzykowska ◽  
Lidia Strandberg ◽  
Tomasz Puzyn ◽  
Bo Strandberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document