Old sins have long shadows: climate change weakens efficiency of trophic coupling of phyto- and zooplankton in a deep oligo-mesotrophic lowland lake (Stechlin, Germany)—a causality analysis

Hydrobiologia ◽  
2018 ◽  
Vol 831 (1) ◽  
pp. 101-117 ◽  
Author(s):  
Géza B. Selmeczy ◽  
András Abonyi ◽  
Lothar Krienitz ◽  
Peter Kasprzak ◽  
Peter Casper ◽  
...  
PLoS ONE ◽  
2012 ◽  
Vol 7 (10) ◽  
pp. e47408 ◽  
Author(s):  
Valentina Lauria ◽  
Martin J. Attrill ◽  
John K. Pinnegar ◽  
Andrew Brown ◽  
Martin Edwards ◽  
...  

2019 ◽  
Vol 9 (11) ◽  
pp. 2321 ◽  
Author(s):  
Jong Seok Lee ◽  
Hyun Il Choi

As severe flood damages have been increasing due to climate change, the flood vulnerability assessment is needed in the flood mitigation plans to cope with climate-related flood disasters. Since the Intergovernmental Panel on Climate Change Third Assessment Report (IPCC TAR) presented the three assessment components, such as exposure, sensitivity, and adaptability for the vulnerability to climate change, several aggregation frameworks have been used to compile individual components into the composite indicators to measure the flood vulnerability. It is therefore necessary to select an appropriate aggregation framework for the flood vulnerability assessments because the aggregation frameworks can have a large influence on the composite indicator outcomes. For a comparative analysis of flood vulnerability indicators across different aggregation frameworks for the IPCC’s assessment components, the composite indicators are derived by four representative types of aggregation frameworks with all the same proxy variable set in the Republic of Korea. It is found in the study site that there is a key driver component of the composite indicator outcomes and the flood vulnerability outcomes largely depend on whether the key component is treated independently or dependently in each aggregation framework. It is concluded that the selection of an aggregation framework can be based on the correlation and causality analysis to determine the relative contribution of the assessment components to the overall performance of the composite indicators across different aggregation frameworks.


2011 ◽  
Vol 108 (42) ◽  
pp. 17296-17301 ◽  
Author(s):  
D. D. Zhang ◽  
H. F. Lee ◽  
C. Wang ◽  
B. Li ◽  
Q. Pei ◽  
...  

2021 ◽  
Vol 165 (1-2) ◽  
Author(s):  
Shengda Zhang ◽  
David Dian Zhang ◽  
Qing Pei

AbstractStudies on the spatiotemporal relationship between historical climate change and the patterns of population and war are rare. In this research, statistical methods (such as correlation test and Granger causality analysis) and visualization technique are applied to demonstrate how temperature, in terms of long-term trend and cyclic mode, fundamentally affects the temporal-spatial variations of population center and war center during imperial China (5–1911 CE). Results show that (1) the consistent southward migration of population center and war center overall accords with the macro-trend of temperature cooling over the last two millennia. (2) The extent of the outward expansion of the Chinese Empire is measured by the population center–war center distance that lengthens during warm periods but shortens in cold phases, which correspond to the north/west/northwestward advancement and south/east/eastward retreatment of war center, respectively, while population center moves within a small range. (3) The shift of population latitude precedes that of war latitude, indicating the change from ecological-demographic to social-political sphere in space. We suggest that similar to population center, the temperature-influenced ancient Hu Line, which symbolizes the disparity of population density in different regions of China, may shift by several hundred kilometers; latitudinal rather than longitudinal variations of population center and war center are more robust in history. We also find that precipitation controls war center and population center on the multicentennial scale, but not the scale focused upon in this study. These findings provide new insights and theoretical implications into the in-depth understanding of the nature–human nexus.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1492 ◽  
Author(s):  
Yongqiang Zhang ◽  
Hongxia Li ◽  
Paolo Reggiani

During the last several decades, Earth´s climate has undergone significant changes due to anthropogenic global warming, and feedbacks to the water cycle. Therefore, persistent efforts are required to understand the hydrological processes and to engage in efficient water management strategies under changing environmental conditions. The twenty-four contributions in this Special Issue have broadly addressed the issues across four major research areas: (1) Climate and land-use change impacts on hydrological processes, (2) hydrological trends and causality analysis faced in hydrology, (3) hydrological model simulations and predictions, and (4) reviews on water prices and climate extremes. The substantial number of international contributions to the Special Issue indicates that climate change impacts on water resources analysis attracts global attention. Here, we give an introductory summary of the research questions addressed by the papers and point the attention of readers toward how the presented studies help gaining scientific knowledge and support policy makers.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).


2001 ◽  
Vol 70 (1) ◽  
pp. 47-61 ◽  
Author(s):  
Robert Moss ◽  
James Oswald ◽  
David Baines

Sign in / Sign up

Export Citation Format

Share Document