Interleukin-1β Induces Intracellular Serum Amyloid A1 Expression in Human Coronary Artery Endothelial Cells and Promotes its Intercellular Exchange

Inflammation ◽  
2019 ◽  
Vol 42 (4) ◽  
pp. 1413-1425
Author(s):  
Tadeja Kuret ◽  
Snežna Sodin-Šemrl ◽  
Katjuša Mrak-Poljšak ◽  
Saša Čučnik ◽  
Katja Lakota ◽  
...  
2013 ◽  
Vol 90 ◽  
pp. 55-63 ◽  
Author(s):  
Katja Lakota ◽  
Katjusa Mrak-Poljsak ◽  
Borut Bozic ◽  
Matija Tomsic ◽  
Snezna Sodin-Semrl

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Katja Lakota ◽  
Nataša Resnik ◽  
Katjuša Mrak-Poljšak ◽  
Snežna Sodin-Šemrl ◽  
Peter Veranič

Serum amyloid A (SAA) acts as a major acute phase protein and represents a sensitive and accurate marker of inflammation. Besides its hepatic origin, as the main source of serum SAA, this protein is also produced extrahepatically. The mRNA levels of SAA become significantly elevated following proinflammatory stimuli, as well as, are induced through their own positive feedback in human primary coronary artery endothelial cells. However, the intracellular functions of SAA are so far unknown. Colocalization of SAA with cytoskeletal filaments has previously been proposed, so we analyzed the colocalization of SAA with all three cytoskeletal elements: actin filaments, vimentin filaments, and microtubules. Immunofluorescent double-labeling analyses confirmed by PLA method revealed a strict colocalization of SAA with microtubules and a very infrequent attachment to vimentin while the distribution of actin filaments appeared clearly separated from SAA staining. Also, no significant colocalization was found between SAA and endomembranes labeled with the fluorescent lipid stain DiO6. However, SAA appears to be located also unbound in the cytosol, as well as inside the nucleus and within nanotubes extending from the cells or bridging neighboring cells. These different locations of SAA in endothelial cells strongly indicate multiple potential functions of this protein.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
K. Lakota ◽  
D. Hrušovar ◽  
M. Ogrič ◽  
K. Mrak-Poljšak ◽  
S. Čučnik ◽  
...  

Background. RA patients have a higher incidence of cardiovascular diseases compared to the general population. Serum amyloid A (SAA) is an acute-phase protein, upregulated in sera of RA patients. Aim. To determine the effects of medications on SAA-stimulated human coronary artery endothelial cells (HCAEC). Methods. HCAEC were preincubated for 2 h with medications from sterile ampules (dexamethasone, methotrexate, certolizumab pegol, and etanercept), dissolved in medium (captopril) or DMSO (etoricoxib, rosiglitazone, meloxicam, fluvastatin, and diclofenac). Human recombinant apo-SAA was used to stimulate HCAEC at a final 1000 nM concentration for 24 hours. IL-6, IL-8, sVCAM-1, and PAI-1 were measured by ELISA. The number of viable cells was determined colorimetrically. Results. SAA-stimulated levels of released IL-6, IL-8, and sVCAM-1 from HCAEC were significantly attenuated by methotrexate, fluvastatin, and etoricoxib. Both certolizumab pegol and etanercept significantly decreased PAI-1 by an average of 43%. Rosiglitazone significantly inhibited sVCAM-1 by 58%. Conclusion. We observed marked influence of fluvastatin on lowering cytokine production in SAA-activated HCAEC. Methotrexate showed strong beneficial effects for lowering released Il-6, IL-8, and sVCAM-1. Interesting duality was observed for NSAIDs, with meloxicam exhibiting opposite-trend effects from diclofenac and etoricoxib. This represents unique insight into specific responsiveness of inflammatory-driven HCAEC relevant to atherosclerosis.


2020 ◽  
Vol 90 (1-2) ◽  
pp. 103-112 ◽  
Author(s):  
Michael J. Haas ◽  
Marilu Jurado-Flores ◽  
Ramadan Hammoud ◽  
Victoria Feng ◽  
Krista Gonzales ◽  
...  

Abstract. Inflammatory and oxidative stress in endothelial cells are implicated in the pathogenesis of premature atherosclerosis in diabetes. To determine whether high-dextrose concentrations induce the expression of pro-inflammatory cytokines, human coronary artery endothelial cells (HCAEC) were exposed to either 5.5 or 27.5 mM dextrose for 24-hours and interleukin-1β (IL-1β), interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor α (TNF α) levels were measured by enzyme immunoassays. To determine the effect of antioxidants on inflammatory cytokine secretion, cells were also treated with α-tocopherol, ascorbic acid, and the glutathione peroxidase mimetic ebselen. Only the concentration of IL-1β in culture media from cells exposed to 27.5 mM dextrose increased relative to cells maintained in 5.5 mM dextrose. Treatment with α-tocopherol (10, 100, and 1,000 μM) and ascorbic acid (15, 150, and 1,500 μM) at the same time that the dextrose was added reduced IL-1β, IL-6, and IL-8 levels in culture media from cells maintained at 5.5 mM dextrose but had no effect on IL-1β, IL-6, and IL-8 levels in cells exposed to 27.5 mM dextrose. However, ebselen treatment reduced IL-1β, IL-6, and IL-8 levels in cells maintained in either 5.5 or 27.5 mM dextrose. IL-2 and TNF α concentrations in culture media were below the limit of detection under all experimental conditions studied suggesting that these cells may not synthesize detectable quantities of these cytokines. These results suggest that dextrose at certain concentrations may increase IL-1β levels and that antioxidants have differential effects on suppressing the secretion of pro-inflammatory cytokines in HCAEC.


Sign in / Sign up

Export Citation Format

Share Document