scholarly journals Design and Feasibility Verification of 6G Wireless Communication Systems with State of the Art Technologies

Author(s):  
Ravilla Dilli

AbstractFrequencies above 100 GHz are the promising frequency bands for 6G wireless communication systems because of the abundant unexplored and unused spectrum. The increasing global demand for ultra-high spectral efficiencies, data rates, speeds and bandwidths in next-generation wireless networks motivates the exploration of peak capabilities of massive MIMO (Multi–Input–Multi–Output) wireless access technology at THz bands (0.1–10 THz). The smaller wavelengths (order of microns) of these frequencies give an advantage of making high gain antennas with smaller physical dimensions and allows massive spatial multiplexing. This paper presents the design of ultra-massive MIMO (ultra-mMIMO) hybrid beamforming system for multi users and its feasibility to function at THz frequency bands. The functionality of the proposed system is verified at higher order modulation schemes to achieve higher spectral efficiencies using performance metrics that includes error vector magnitude, symbol constellations, and antenna array radiation beams. The performance results suggest to use a particular mMIMO antenna configuration based on number of independent data streams per user and strongly recommended to use higher number of data streams per user in order to achieve higher throughputs that satisfy the needs of 6G wireless systems. Also the performance of the proposed system at 0.14 THz is compared with mmWave systems that operate at 28 GHz and 73 GHz bands to justify the feasibility of the proposed work.

T-Comm ◽  
2021 ◽  
Vol 15 (4) ◽  
pp. 4-12
Author(s):  
Mikhail G. Bakulin ◽  
◽  
Vitaly B. Kreyndelin ◽  
Denis Y. Pankratov ◽  
◽  
...  

Multiple Input Multiple Output (MIMO) technology is widely used in modern IEEE radio access systems. There is a tendency to increase the number of antennas, which is also confirmed by the development of MIMO technology in mobile communication systems of 3GPP standards. Requirements for modern radio communication systems are constantly increasing. As the radio frequency spectrum becomes increasingly scarce, it becomes increasingly difficult to transmit large amounts of information by expanding the frequency channel bandwidth. Therefore, the use of MIMO technology to increase the spectral and energy efficiency of communication systems is relevant. In 5G systems, Massive MIMO technology is used, when using which the number of antennas is measured in tens and hundreds. The characteristics of various versions of MIMO technology implemented in the existing standards 802.11n, 802.11ac, 802.11ax, as well as in the promising standard 802.11be (6G systems) are described in detail. Technologies of directional transmission, spatial multiplexing, selection of antennas as particular cases of precoding are considered. Trends of MIMO technology development in wireless communication systems are shown.


Author(s):  
Soukaina Sekkal ◽  
Laurent Canale ◽  
Mariam El Gharbi ◽  
Adel Asselman

In this work, a new flexible antenna integrated with OLED light sources is presented for WiMAX wireless communication systems. The proposed antenna was placed on a 100% polyester base with a thickness of 1.5 mm and achieved a high gain. We evaluated and tested its performance, including reflection coefficient, radiation pattern and gain. The flexible and simple patch antenna has been designed to operate at 3.5 GHz for WiMAX wireless communication systems with a gain value of 5.38 dB. This article proves the applicability of the proposed material for the integration of flexible antennas in OLEDs while maintaining gain performance similar to conventional flat antennas.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Hamsakutty Vettikalladi ◽  
Waleed Tariq Sethi ◽  
Ahmad Fauzi Bin Abas ◽  
Wonsuk Ko ◽  
Majeed A. Alkanhal ◽  
...  

Terahertz (THz) links will play a major role in high data rate communication over a distance of few meters. In order to achieve this task, antenna designs with high gain and wideband characteristics will spearhead these links. In this contribution, we present different antenna designs that offer characteristics better suited to THz communication over short distances. Firstly, a single-element antenna having a dipole and reflector is designed to operate at 300 GHz, which is considered as a sub-terahertz band. That antenna achieves a wide impedance bandwidth of 38.6% from 294 GHz to 410 GHz with a gain of 5.14 dBi. Secondly, two designs based on the same dipole structure but with added directors are introduced to increase the gain while maintaining almost the same bandwidth. The gains achieved are 8.01 dBi and 9.6 dBi, respectively. Finally, an array of 1×4 elements is used to achieve the highest possible gain of 13.6 dBi with good efficiency about 89% and with limited director elements for a planar compact structure to state-of-the-art literature. All the results achieved make the proposed designs viable candidates for high-speed and short-distance wireless communication systems.


Sign in / Sign up

Export Citation Format

Share Document