Electrocatalytic cleavage of a carbon–chlorine bond by Re(IV)–chloro complex: a mechanistic insight from DFT

Author(s):  
Jamaladin Shakeri ◽  
Hassan Hadadzadeh ◽  
Hossein Farrokhpour ◽  
Matthias Weil ◽  
Mohammad Joshaghani
Author(s):  
Tomasz J. Idzik ◽  
Zofia M. Myk ◽  
Łukasz Struk ◽  
Magdalena Perużyńska ◽  
Gabriela Maciejewska ◽  
...  

Triisopropylsilyltrifluoromethanesulfonate can be effectively used for the arylation of a wide range of enelactams. The multinuclear NMR study provided deep insights into the reaction mechanism.


2019 ◽  
Vol 19 (11) ◽  
pp. 914-926 ◽  
Author(s):  
Maiara Bernardes Marques ◽  
Michael González-Durruthy ◽  
Bruna Félix da Silva Nornberg ◽  
Bruno Rodrigues Oliveira ◽  
Daniela Volcan Almeida ◽  
...  

Background:PIM-1 is a kinase which has been related to the oncogenic processes like cell survival, proliferation, and multidrug resistance (MDR). This kinase is known for its ability to phosphorylate the main extrusion pump (ABCB1) related to the MDR phenotype.Objective:In the present work, we tested a new mechanistic insight on the AZD1208 (PIM-1 specific inhibitor) under interaction with chemotherapy agents such as Daunorubicin (DNR) and Vincristine (VCR).Materials and Methods:In order to verify a potential cytotoxic effect based on pharmacological synergism, two MDR cell lines were used: Lucena (resistant to VCR) and FEPS (resistant to DNR), both derived from the K562 non-MDR cell line, by MTT analyses. The activity of Pgp was ascertained by measuring accumulation and the directional flux of Rh123. Furthermore, we performed a molecular docking simulation to delve into the molecular mechanism of PIM-1 alone, and combined with chemotherapeutic agents (VCR and DNR).Results:Our in vitro results have shown that AZD1208 alone decreases cell viability of MDR cells. However, co-exposure of AZD1208 and DNR or VCR reverses this effect. When we analyzed the ABCB1 activity AZD1208 alone was not able to affect the pump extrusion. Differently, co-exposure of AZD1208 and DNR or VCR impaired ABCB1 activity, which could be explained by compensatory expression of abcb1 or other extrusion pumps not analyzed here. Docking analysis showed that AZD1208 is capable of performing hydrophobic interactions with PIM-1 ATP- binding-site residues with stronger interaction-based negative free energy (FEB, kcal/mol) than the ATP itself, mimicking an ATP-competitive inhibitory pattern of interaction. On the same way, VCR and DNR may theoretically interact at the same biophysical environment of AZD1208 and also compete with ATP by the PIM-1 active site. These evidences suggest that AZD1208 may induce pharmacodynamic interaction with VCR and DNR, weakening its cytotoxic potential in the ATP-binding site from PIM-1 observed in the in vitro experiments.Conclusion:Finally, the current results could have a pre-clinical relevance potential in the rational polypharmacology strategies to prevent multiple-drugs resistance in human leukemia cancer therapy.


RSC Advances ◽  
2021 ◽  
Vol 11 (34) ◽  
pp. 20961-20969
Author(s):  
Yunqing He ◽  
Wanli Nie ◽  
Ying Xue ◽  
Qishan Hu

Hydrosilylation or amination products? It depends on water amount and nucleophiles like excess water or produced/added amines.


2021 ◽  
Vol 154 (12) ◽  
pp. 124313
Author(s):  
L. M. Hunnisett ◽  
P. F. Kelly ◽  
S. Bleay ◽  
F. Plasser ◽  
R. King ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 53
Author(s):  
Jashobanta Sahoo ◽  
Santlal Jaiswar ◽  
Pabitra B. Chatterjee ◽  
Palani S. Subramanian ◽  
Himanshu Sekhar Jena

The development of synthetic lanthanide luminescent probes for selective sensing or binding anions in aqueous medium requires an understanding of how these anions interact with synthetic lanthanide probes. Synthetic lanthanide probes designed to differentiate anions in aqueous medium could underpin exciting new sensing tools for biomedical research and drug discovery. In this direction, we present three mononuclear lanthanide-based complexes, EuLCl3 (1), SmLCl3 (2), and TbLCl3 (3), incorporating a hexadentate aminomethylpiperidine-based nitrogen-rich heterocyclic ligand L for sensing anion and establishing mechanistic insight on their binding activities in aqueous medium. All these complexes are meticulously studied for their preferential selectivities towards different anions such as HPO42−, SO42−, CH3COO−, I−, Br−, Cl−, F−, NO3−, CO32−/HCO3−, and HSO4− at pH 7.4 in aqueous HEPES (2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid) buffer. Among the anions scanned, HPO42− showed an excellent luminescence change with all three complexes. Job’s plot and ESI-MS support the 1:2 association between the receptors and HPO42−. Systematic spectrophotometric titrations of 1–3 against HPO42− demonstrates that the emission intensities of 1 and 2 were enhanced slightly upon the addition of HPO42− in the range 0.01–1 equiv and 0.01–2 equiv., respectively. Among the three complexes, complex 3 showed a steady quenching of luminescence throughout the titration of hydrogen phosphate. The lower and higher detection limits of HPO42− by complexes 1 and 2 were determined as 0.1–4 mM and 0.4–3.2 mM, respectively, while complex 3 covered 0.2–100 μM. This concludes that all complexes demonstrated a high degree of sensitivity and selectivity towards HPO42−.


Sign in / Sign up

Export Citation Format

Share Document