Effect of Heavy Metals on Dynamic and Static Quenching of the Fluorescence of the Host-Guest Inclusion Complex Methyl-β-Cyclodextrin by 2,9-Dimethyl-4,7-Diphenyl-1,10-Phenanthroline in Aqueous Media

Author(s):  
Umit Ay
Author(s):  
Joshua O. Ighalo ◽  
Lois T. Arowoyele ◽  
Samuel Ogunniyi ◽  
Comfort A. Adeyanju ◽  
Folasade M. Oladipo-Emmanuel ◽  
...  

Background: The presence of pollutants in polluted water is not singularized hence pollutant species are constantly in competition for active sites during the adsorption process. A key advantage of competitive adsorption studies is that it informs on the adsorbent performance in real water treatment applications. Objective: This study aims to investigate the competitive adsorption of Pb(II), Cu(II), Fe(II) and Zn(II) using elephant grass (Pennisetum purpureum) biochar and hybrid biochar from LDPE. Method: The produced biochar was characterised by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The effect of adsorption parameters, equilibrium isotherm modelling and parametric studies were conducted based on data from the batch adsorption experiments. Results: For both adsorbents, the removal efficiency was >99% over the domain of the entire investigation for dosage and contact time suggesting that they are very efficient for removing multiple heavy metals from aqueous media. It was observed that removal efficiency was optimal at 2 g/l dosage and contact time of 20 minutes for both adsorbent types. The Elovich isotherm and the pseudo-second order kinetic models were best-fit for the competitive adsorption process. Conclusion: The study was able to successfully reveal that biomass biochar from elephant grass and hybrid biochar from LDPE can be used as effective adsorbent material for the removal of heavy metals from aqueous media. This study bears a positive implication for environmental protection and solid waste management.


2011 ◽  
Vol 76 (12) ◽  
pp. 1651-1667 ◽  
Author(s):  
Šárka Ramešová ◽  
Romana Sokolová ◽  
Ilaria Degano ◽  
Magdaléna Hromadová ◽  
Miroslav Gál ◽  
...  

The influence of the molecular cavity protection on degradation processes of bioorganic compounds quercetin and luteolin used as the original dyes in old tapestries was studied. The degradation processes were studied by electrochemical methods in aqueous media. The products of the exhaustive electrolysis were separated and identified by GC-MS analysis. Cyclic voltammetry characteristics indicate that the inclusion complex is formed. The inclusion affects the redox potentials of both oxidation waves related to the different dissociation forms of the flavonoid molecule. It was shown that decomposition products formed by the oxidation of quercetin are stabilized in the cavity of β-cyclodextrin, including the main oxidation product 2(3′,4′-dihydroxybenzoyl)-2,4,6-trihydroxybenzofuran-3(2H)-one. The formation of the 1:1 inclusion complex of luteolin with β-cyclodextrin is supported by the enhancement of fluorescence intensity. In the case of quercetin, a decrease of fluorescence intensity occurs when 1:1 inclusion complex with β-cyclodextrin is formed.


2017 ◽  
Vol 5 (2) ◽  
pp. 195
Author(s):  
Mayara Coêlho ◽  
Herlane Da Silva ◽  
Muhammad Islam ◽  
Vicente Viana ◽  
Ana Amélia Melo-Cavalcante

Nerol is an acyclic type monoterpene with important biological activities. However, the low solubility in aqueous media is a limiting factor for its user. Cyclodextrins have been widely used in order to improve the solubility, stability and bioavailability of nonpolar molecules through the formation of inclusion complexes. Thus, the present study consists in the development of nerol inclusion complex in combination with the β-cyclodextrin (β-CD) followed by characterizing by thermal analysis and spectrophotometric absorption in the infrared (FTIR). The results suggest a complexation of nerol with β-CD having detours and changed the intensity of various bands. The thermo gravimetric curve of CI found to indicate an output of solvating water molecules from the complex cavity formed for replacement of drug molecules probably included. Thus, it is concluded a possibility to obtain inclusion complexes of nerol monoterpene with β-CD, which will increase its solubility and facilitate delivery process.


2016 ◽  
Vol 14 (1) ◽  
pp. 175-187 ◽  
Author(s):  
Lăcrămioara (Negrilă) Nemeş ◽  
Laura Bulgariu

AbstractMustard waste biomass was tested as a biosorbent for the removal of Pb(II), Zn(II) and Cd(II) from aqueous solution. This strategy may be a sustainable option for the utilization of such wastes. The influence of the most important operating parameters of the biosorption process was analyzed in batch experiments, and optimal conditions were found to include initial solution pH 5.5, 5.0 g biosorbent/L, 2 hours of contact time and high temperature. Kinetics analyses show that the maximum of biosorption was quickly reached and could be described by a pseudo-second order kinetic model. The equilibrium data were well fitted by the Langmuir model, and the highest values of maximum biosorption capacity were obtained with Pb(II), followed by Zn(II) and Cd(II). The thermodynamic parameters of the biosorption process (ΔG, ΔH and ΔS) were also evaluated from isotherms. The results of this study suggest that mustard waste biomass can be used for the removal of heavy metals from aqueous media.


2018 ◽  
Vol 77 (10) ◽  
pp. 2355-2368 ◽  
Author(s):  
Khalida Naseem ◽  
Zahoor H. Farooqi ◽  
Muhammad Z. Ur Rehman ◽  
Muhammad A. Ur Rehman ◽  
Robina Begum ◽  
...  

Abstract This review is based on the adsorption characteristics of sorghum (Sorghum bicolor) for removal of heavy metals from aqueous media. Different parameters like pH, temperature of the medium, sorghum concentration, sorghum particle size, contact time, stirring speed and heavy metal concentration control the adsorption efficiency of sorghum biomass for heavy metal ions. Sorghum biomass showed maximum efficiency for removal of heavy metal ions in the pH range of 5 to 6. It is an agricultural waste and is regarded as the cheapest biosorbent, having high adsorption capacity for heavy metals as compared to other reported adsorbents, for the treatment of heavy metal polluted wastewater. Adsorption of heavy metal ions onto sorghum biomass follows pseudo second order kinetics. Best fitted adsorption isotherm models for removal of heavy metal ions on sorghum biomass are Langmuir and Freundlich adsorption isotherm models. Thermodynamic aspects of heavy metal ions adsorption onto sorghum biomass have also been elaborated in this review article. How adsorption efficiency of sorghum biomass can be improved by different physical and chemical treatments in future has also been elaborated. This review article will be highly useful for researchers working in the field of water treatment via biosorption processing. The quantitative demonstrated efficiency of sorghum biomass for various heavy metal ions has also been highlighted in different sections of this review article.


2005 ◽  
pp. 3694 ◽  
Author(s):  
Gregory G. Wildgoose ◽  
Henry C. Leventis ◽  
Andrew O. Simm ◽  
John H. Jones ◽  
Richard G. Compton

RSC Advances ◽  
2017 ◽  
Vol 7 (5) ◽  
pp. 2905-2912 ◽  
Author(s):  
Lin Dai ◽  
Rui Liu ◽  
Li-Qiu Hu ◽  
Jun-Hui Wang ◽  
Chuan-Ling Si

Novel cellulose hydrogels based on the inclusion complex between α-cyclodextrin and binary-drug loaded nanoparticles (carboxymethylcellulose–betulinic acid/hydroxycamptothecine nanoparticles) were prepared in aqueous media for the first time.


Sign in / Sign up

Export Citation Format

Share Document