Flexural properties of sandwich beams consisting of air plasma sprayed alloy 625 and nickel alloy foam

2009 ◽  
Vol 44 (11) ◽  
pp. 2836-2843 ◽  
Author(s):  
F. Azarmi ◽  
T. W. Coyle ◽  
J. Mostaghimi
2010 ◽  
Vol 204 (9-10) ◽  
pp. 1521-1527 ◽  
Author(s):  
H. Liu ◽  
F. Azarmi ◽  
M. Bussmann ◽  
J. Mostaghimi ◽  
T.W. Coyle

2018 ◽  
Vol 18 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Mohammed J Kadhim ◽  
Mohammed H Hafiz ◽  
Maryam A Ali Bash

The high temperature corrosion behavior of thermal barrier coating (TBC) systemconsisting of IN-738 LC superalloy substrate, air plasma sprayed Ni24.5Cr6Al0.4Y (wt%)bond coat and air plasma sprayed ZrO2-20 wt% ceria-3.6 wt% yttria (CYSZ) ceramic coatwere characterized. The upper surfaces of CYSZ covered with 30 mg/cm2 , mixed 45 wt%Na2SO4-55 wt% V2O5 salt were exposed at different temperatures from 800 to 1000 oC andinteraction times from 1 up to 8 h. The upper surface plan view of the coatings wereidentified for topography, roughness, chemical composition, phases and reaction productsusing scanning electron microscopy, energy dispersive spectroscopy, talysurf, and X-raydiffraction. XRD analyses of the plasma sprayed coatings after hot corrosion confirmed thephase transformation of nontransformable tetragonal (t') into monoclinic phase, presence ofYVO4 and CeVO4 products. Analysis of the hot corrosion CYSZ coating confirmed theformation of high volume fraction of YVO4, with low volume fractions of CeOV4 and CeO2.The formation of these compounds were combined with formation of monoclinic phase (m)from transformation of nontransformable tetragonal phase (t').


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 55
Author(s):  
Markus Wolf ◽  
Hideki Kakisawa ◽  
Fabia Süß ◽  
Daniel Emil Mack ◽  
Robert Vaßen

In the high temperature combustion atmosphere inside of aircraft turbines, the currently used ceramic matrix composites require a protective environmental barrier coating (EBC) to mitigate corrosion of the turbine parts. Besides thermomechanical and thermochemical properties like matching thermal expansion coefficient (CTE) and a high resistance against corrosive media, mechanical properties like a high adhesion strength are also necessary for a long lifetime of the EBC. In the present work, the adhesion between an air plasma sprayed silicon bond coat and a vacuum plasma sprayed ytterbium disilicate topcoat was aimed to be enhanced by a laser surface structuring of the Si bond coat. An increase in interface toughness was assumed, since the introduction of structures would lead to an increased mechanical interlocking at the rougher bond coat interface. The interface toughness was measured by a new testing method, which allows the testing of specific interfaces. The results demonstrate a clear increase of the toughness from an original bond coat/topcoat interface (8.6 J/m2) compared to a laser structured interface (14.7 J/m2). Observations in the crack propagation indicates that the laser structuring may have led to a strengthening of the upper bond coat area by sintering. Furthermore, in addition to cohesive failure components, adhesive components can also be observed, which could have influenced the determined toughness.


2021 ◽  
Vol 206 ◽  
pp. 116649
Author(s):  
Xun Zhang ◽  
Alan C.F. Cocks ◽  
Yoshifumi Okajima ◽  
Kazuma Takeno ◽  
Taiji Torigoe

2007 ◽  
Vol 14 (05) ◽  
pp. 935-943 ◽  
Author(s):  
L. YANG ◽  
Y. C. ZHOU ◽  
W. G. MAO ◽  
Q. X. LIU

In this paper, the impedance spectroscopy technique was employed to examine nondestructively the isothermal oxidation of air plasma sprayed (APS) thermal barrier coatings (TBCs) in air at 800°C. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were also used to characterize the microstructure evolution of TBCs. After oxidation, the thermally grown oxide (TGO), which was mainly composed of alumina as confirmed by EDX, formed at the upper ceramic coat/bond coat interface, the lower bond coat/substrate interface, and the bond coat. Impedance diagrams obtained from impedance measurements at room temperature were analyzed according to the equivalent circuit model proposed for the TBCs. Various observed electrical responses relating to the growth of oxides and the sintering of YSZ were explained by simulating the impedance spectra of the TBCs.


Sign in / Sign up

Export Citation Format

Share Document