Wettability, interfacial reactions, and impact strength of Sn–3.0Ag–0.5Cu solder/ENIG substrate used for fluxless soldering under formic acid atmosphere

2019 ◽  
Vol 55 (7) ◽  
pp. 3107-3117 ◽  
Author(s):  
Siliang He ◽  
Runhua Gao ◽  
Yu-An Shen ◽  
Jiahui Li ◽  
Hiroshi Nishikawa
2018 ◽  
Vol 30 (2) ◽  
pp. 118-128 ◽  
Author(s):  
Alexander Hanss ◽  
Gordon Elger

Purpose For soldering, flux is essential because it enables the wetting of the molten solder. Fluxless soldering, i.e. residue-free soldering with the aid of gaseous activators, has been known for many years, but is only well established in the field of opto- and microwave electronics where the solder is applied as preform. In high-volume SMD applications where solder paste is printed, this technology is rarely used until now. The reducing effect of a gaseous activator like formic acid vapor on certain solder alloys is known in practice. However, the corresponding reactions which occur under soldering conditions in nitrogen atmosphere have so far not been systematically investigated for different solder alloys. This study aims to analyze the different chemical reaction channels which occur on the surface of different solders, i.e. catalytical dissociation of formic acid on the pure or oxidized metal surface and the formation and evaporation of metal formates. Based on this analysis, a residue-free solder process under formic acid is developed for solder paste applications. Design/methodology/approach In this paper, different solder alloys (SnAgCu, SnPb, BiSn, In) were analyzed with thermal gravimetric analysis (TGA) under formic acid flow. Details on mass change depending on the soldering temperature are presented. Activation temperatures are estimated and correlated to the soldering processes. Based on the analysis, fluxless solder pastes and suitable soldering processes are developed and presented. Major paste properties such as printability are compared to a commercial flux solder paste. High-power flip chip LEDs which can be assembled directly on a printed circuit board are used to demonstrate the fluxless soldering. Likewise, the soldering results of standard paste and fluxless paste systems after a reflow process are evaluated and compared. Findings The experimental results show that TGA is an efficient way to gain deeper understanding of the redox processes which occur under formic acid activation, i.e. the formation of metal formates and their evaporation and dissociation. It is possible to solder residue-free not only with preforms but also with a fluxless solder paste. The resulting solder joints have the same quality as those for standard solder paste in terms of voids detected by X-ray and mechanical shear strength. Originality/value In the fluxless soldering process, the reduction of oxide layers, and therefore the wetting of the solder spheres, is enabled by gaseous formic acid. After the soldering process, no cleaning process is necessary because no corrosive residues are left on the circuit boards and components. Therefore, soldering using solder paste without aggressive chemical ingredients has a high market potential. Expensive preforms could be replaced by paste dispensing or paste printing.


2019 ◽  
Vol 43 (26) ◽  
pp. 10227-10231 ◽  
Author(s):  
Omid Mokhtari ◽  
Fosca Conti ◽  
Sri Krishna Bhogaraju ◽  
Markus Meier ◽  
Helmut Schweigart ◽  
...  

Crystals of tin-oxides and tin-formates are grown from Sn–Ag–Cu alloy under formic acid vapour as used in the fluxless soldering process.


2021 ◽  
Author(s):  
Yuhao Bi ◽  
Siliang He ◽  
Wangyun Li ◽  
Daoguo Yang ◽  
Hiroshi Nishikawa

2020 ◽  
Vol 239 ◽  
pp. 122309 ◽  
Author(s):  
Siliang He ◽  
Runhua Gao ◽  
Jiahui Li ◽  
Yu-An Shen ◽  
Hiroshi Nishikawa

Author(s):  
L.J. Chen ◽  
Y.F. Hsieh

One measure of the maturity of a device technology is the ease and reliability of applying contact metallurgy. Compared to metal contact of silicon, the status of GaAs metallization is still at its primitive stage. With the advent of GaAs MESFET and integrated circuits, very stringent requirements were placed on their metal contacts. During the past few years, extensive researches have been conducted in the area of Au-Ge-Ni in order to lower contact resistances and improve uniformity. In this paper, we report the results of TEM study of interfacial reactions between Ni and GaAs as part of the attempt to understand the role of nickel in Au-Ge-Ni contact of GaAs.N-type, Si-doped, (001) oriented GaAs wafers, 15 mil in thickness, were grown by gradient-freeze method. Nickel thin films, 300Å in thickness, were e-gun deposited on GaAs wafers. The samples were then annealed in dry N2 in a 3-zone diffusion furnace at temperatures 200°C - 600°C for 5-180 minutes. Thin foils for TEM examinations were prepared by chemical polishing from the GaA.s side. TEM investigations were performed with JE0L- 100B and JE0L-200CX electron microscopes.


Author(s):  
L. J. Chen ◽  
L. S. Hung ◽  
J. W. Mayer

When an energetic ion penetrates through an interface between a thin film (of species A) and a substrate (of species B), ion induced atomic mixing may result in an intermixed region (which contains A and B) near the interface. Most ion beam mixing experiments have been directed toward metal-silicon systems, silicide phases are generally obtained, and they are the same as those formed by thermal treatment.Recent emergence of silicide compound as contact material in silicon microelectronic devices is mainly due to the superiority of the silicide-silicon interface in terms of uniformity and thermal stability. It is of great interest to understand the kinetics of the interfacial reactions to provide insights into the nature of ion beam-solid interactions as well as to explore its practical applications in device technology.About 500 Å thick molybdenum was chemical vapor deposited in hydrogen ambient on (001) n-type silicon wafer with substrate temperature maintained at 650-700°C. Samples were supplied by D. M. Brown of General Electric Research & Development Laboratory, Schenectady, NY.


Sign in / Sign up

Export Citation Format

Share Document