Novel three-dimensional TiO2-Fe3O4@polypyrrole composites with tunable microwave absorption in the 2–40 GHz frequency range

2020 ◽  
Vol 55 (32) ◽  
pp. 15493-15509
Author(s):  
Fubin Liu ◽  
Cuiping Li ◽  
Xiaohui Jiang ◽  
Geoffrey I. N. Waterhouse ◽  
Cuijuan Xing ◽  
...  
Author(s):  
Jun Zhou ◽  
Fan Guo ◽  
Jialiang Luo ◽  
Gazi Hao ◽  
Guigao Liu ◽  
...  

Developing a low-frequency tunable microwave absorber for the normal use of sophisticated electric devices is an urgent need for electromagnetic pollution. Herein, we report the designed synthesis of a three-dimensional...


2019 ◽  
Vol 798 ◽  
pp. 414-423 ◽  
Author(s):  
Cuiping Li ◽  
Yaqing Ge ◽  
Xiaohui Jiang ◽  
Jing Sui ◽  
Zhiming Zhang ◽  
...  

Author(s):  
Joachim Frank

Cryo-electron microscopy combined with single-particle reconstruction techniques has allowed us to form a three-dimensional image of the Escherichia coli ribosome.In the interior, we observe strong density variations which may be attributed to the difference in scattering density between ribosomal RNA (rRNA) and protein. This identification can only be tentative, and lacks quantitation at this stage, because of the nature of image formation by bright field phase contrast. Apart from limiting the resolution, the contrast transfer function acts as a high-pass filter which produces edge enhancement effects that can explain at least part of the observed variations. As a step toward a more quantitative analysis, it is necessary to correct the transfer function in the low-spatial-frequency range. Unfortunately, it is in that range where Fourier components unrelated to elastic bright-field imaging are found, and a Wiener-filter type restoration would lead to incorrect results. Depending upon the thickness of the ice layer, a varying contribution to the Fourier components in the low-spatial-frequency range originates from an “inelastic dark field” image. The only prospect to obtain quantitatively interpretable images (i.e., which would allow discrimination between rRNA and protein by application of a density threshold set to the average RNA scattering density may therefore lie in the use of energy-filtering microscopes.


2016 ◽  
Vol 12 (2) ◽  
pp. 4204-4212 ◽  
Author(s):  
Maheshwar Sharon ◽  
Ritesh Vishwakarma ◽  
Abhijeet Rajendra Phatak ◽  
Golap Kalita ◽  
Nallin Sharma ◽  
...  

Corn cob, an agricultural waste, is paralyzed at different temperatures (700oC, 800oC and 900oC). Microwave absorption of carbon in the frequency range of 2 GHz to 8 GHz is reported. Carbon activated  with 5%  nickel nitrate showed more than 90% absorption of microwave in the frequency range from 6 GHz to 8 GHz, while carbon activated  with 10% Nickel nitrate treated corn cob showed 90% absorption  in the frequency range of 2.5 GHz to 5 GHz. Carbon showing the best absorption are characterized by XRD, Raman spectra and SEM . It is suggested that corn cob treatment   alone with KOH did not improve the microwave absorption, whereas treatment along with nickel nitrate improved the absorption property much better. It is proposed that treatment with nickel nitrate helps in creating suitable pores in carbon   which improved the absorption behavior because while treating carbon with 1N HCl helps to leach out nickel creating equivalent amount of pores in the carbon.


2021 ◽  
Vol 211 ◽  
pp. 108642
Author(s):  
Dandan Zhi ◽  
Tian Li ◽  
Jinzhe Li ◽  
Hesong Ren ◽  
Fanbin Meng

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Yangyang Gu ◽  
Peng Dai ◽  
Wen Zhang ◽  
Zhanwen Su

AbstractIn this work, we demonstrated a simple method for preparing three-dimensional interconnected carbon nanofibers (ICNF) derived from fish bone as an efficient and lightweight microwave absorber. The as-obtained ICNF exhibits excellent microwave absorption performance with a maximum reflection loss of –59.2 dB at the filler content of 15 wt%. In addition, the effective absorption bandwidth can reach 4.96 GHz at the thickness of 2 mm. The outstanding microwave absorption properties can be mainly ascribed to its well-defined interconnected nanofibers architecture and the doping of nitrogen atoms, which are also better than most of the reported carbon-based absorbents. This work paves an attractive way for the design and fabrication of highly efficient and lightweight electromagnetic wave absorbers.


2021 ◽  
pp. 1-35
Author(s):  
Rick Dehner ◽  
Pranav Sriganesh ◽  
Ahmet Selamet ◽  
Keith Miazgowicz

Abstract The present study focuses on the acoustics of a turbocharger centrifugal compressor from a spark-ignition internal combustion engine. Whoosh noise is typically the primary concern for this type of compressor, which is loosely characterized by broadband sound elevation in the 4 to 13 kHz range. To identify the generation mechanism of broadband whoosh noise, the present study combines three approaches: three-dimensional (3D) computational fluid dynamics (CFD) predictions, experiments, and modal decomposition of 3D CFD results. After establishing the accuracy of predictions, flow structures and time-resolved pressures are closely examined in the vicinity of the main blade leading edge. This reveals the presence of rotating instabilities that may interact with the rotor blades to generate noise. An azimuthal modal decomposition is performed on the predicted pressure field to determine the number of cells and the frequency content of these rotating instabilities. The strength of the rotating instabilities and the frequency range in which noise is generated as a consequence of the rotor-rotating instability interaction, is found to correspond well with the qualitative trend of the whoosh noise that is measured several duct diameters upstream of the rotor blades. The variation of whoosh frequency range between low and high rotational speeds is interpreted through this analysis. It is also found that the whoosh noise primarily propagates along the duct as acoustic azimuthal modes. Hence, the inlet duct diameter, which governs the cut-off frequency for multi-dimensional acoustic modes, determines the lower frequency bound of the broadband noise.


Sign in / Sign up

Export Citation Format

Share Document