Strong Zeeman splitting in orbital-hybridized valleytronic interfaces

Author(s):  
Steven T. Hartman ◽  
Ghanshyam Pilania
Keyword(s):  
Author(s):  
M. M. Glazov

This chapter is devoted to one of key phenomena in the field of spin physics, namely, resonant absorption of electromagnetic waves under conditions where the Zeeman splitting of spin levels in magnetic field is equal to photon energy. This method is particularly important for identification of nuclear spin effects, because resonance spectra provide fingerprints of different involved spin species and make it possible to distinguish different nuclear isotopes. As discussed in this chapter the nuclear magnetic resonance provides also an access to local magnetic fields acting on nuclear spins. These fields are caused by the magnetic interactions between the nuclei and by the quadrupole splittings of nuclear spin states in anisotropic crystalline environment. Manifestations of spin resonance in optical responses of semiconductors–that is, optically detected magnetic resonance–are discussed.


2021 ◽  
Vol 117 ◽  
pp. 111141
Author(s):  
U.V. Valiev ◽  
D.N. Karimov ◽  
M.G. Brik ◽  
C.G. Ma ◽  
R.R. Vildanov ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1720
Author(s):  
Antonios Balassis ◽  
Godfrey Gumbs ◽  
Oleksiy Roslyak

We have investigated the α–T3 model in the presence of a mass term which opens a gap in the energy dispersive spectrum, as well as under a uniform perpendicular quantizing magnetic field. The gap opening mass term plays the role of Zeeman splitting at low magnetic fields for this pseudospin-1 system, and, as a consequence, we are able to compare physical properties of the the α–T3 model at low and high magnetic fields. Specifically, we explore the magnetoplasmon dispersion relation in these two extreme limits. Central to the calculation of these collective modes is the dielectric function which is determined by the polarizability of the system. This latter function is generated by transition energies between subband states, as well as the overlap of their wave functions.


2003 ◽  
Vol 794 ◽  
Author(s):  
A. M. Mintairov ◽  
A. S. Vlasov ◽  
J. L. Merz

ABSTRACTWe present results obtained using low temperature near-field scanning optical microscopy for the measurements of Zeeman splitting and the diamagnetic shift of single self-organized InAs/AlAs, InAs/GaAs and InP/GaInP quantum dots. The measurements allow us to relate the bimodal size distribution of InAs dots with variations in In content. For single InP QDs we observed a strong circular polarization at zero magnetic field accompanied with a negative energy shift, suggesting that strong internal magnetic fields exist in these QDs.


2011 ◽  
Vol 25 (15) ◽  
pp. 1259-1270
Author(s):  
TIANXING MA

Within the Luttinger Hamiltonian, electric-field-induced resonant spin polarization of a two-dimensional hole gas in a perpendicular magnetic field was studied. The spin polarization arising from splitting between the light and the heavy hole bands shows a resonant peak at a certain magnetic field. Especially, the competition between the Luttinger term and the structural inversion asymmetry leads to a rich resonant peaks structure, and the required magnetic field for the resonance may be effectively reduced by enlarging the effective width of the quantum well. Furthermore, the Zeeman splitting tends to move the resonant spin polarization to a relative high magnetic field and destroy these rich resonant spin phenomena. Finally, both the height and the weight of the resonant peak increase as the temperature decreases. It is believed that such resonant spin phenomena may be verified in the sample of a two-dimensional hole gas, and it may provide an efficient way to control spin polarization by an external electric field.


2009 ◽  
Vol 9 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Jung Ho Yu ◽  
Xinyu Liu ◽  
Kyoung Eun Kweon ◽  
Jin Joo ◽  
Jiwon Park ◽  
...  
Keyword(s):  

1996 ◽  
Vol 77 (6) ◽  
pp. 1139-1142 ◽  
Author(s):  
Wenhao Wu ◽  
J. Williams ◽  
P. W. Adams

Sign in / Sign up

Export Citation Format

Share Document