A sessile drop approach for studying 4H-SiC/liquid silicon high-temperature interface reconstructions

Author(s):  
Xinming Xing ◽  
Takeshi Yoshikawa ◽  
Olga Budenkova ◽  
Didier Chaussende
Author(s):  
K Das Chowdhury ◽  
R. W. Carpenter ◽  
W. Braue

Research on reaction-bonded SiC (RBSiC) is aimed at developing a reliable structural ceramic with improved mechanical properties. The starting materials for RBSiC were Si,C and α-SiC powder. The formation of the complex microstructure of RBSiC involves (i) solution of carbon in liquid silicon, (ii) nucleation and epitaxial growth of secondary β-SiC on the original α-SiC grains followed by (iii) β>α-SiC phase transformation of newly formed SiC. Due to their coherent nature, epitaxial SiC/SiC interfaces are considered to be segregation-free and “strong” with respect to their effect on the mechanical properties of RBSiC. But the “weak” Si/SiC interface limits its use in high temperature situations. However, few data exist on the structure and chemistry of these interfaces. Microanalytical results obtained by parallel EELS and HREM imaging are reported here.


2021 ◽  
pp. 095400832098729
Author(s):  
K Sudheendra ◽  
Jennifer Vinodhini ◽  
M Govindaraju ◽  
Shantanu Bhowmik

The study involves the processing of a novel poly [1, 4-phenylene-cis-benzobisoxazole] (PBO) fibre reinforced high-temperature thermoplastic composite with polyaryletherketone (PAEK) as the matrix. The PBO fibre and the PAEK film surface was modified using the method of argon and nitrogen plasma treatment. The investigation primarily focuses on evaluating the tensile properties of the fabricated laminates and correlating it with the effect of plasma treatment, surface characteristics, and its fracture surface. A 5% decrease in tensile strength was observed post argon plasma treatment while a 27% increase in strength was observed post nitrogen plasma treatment. The morphology of the failure surface was investigated by scanning electron microscopy and an interfacial failure was observed. Furthermore, the effect of plasma on the wettability of PBO fibres and PAEK film surface was confirmed by the Dynamic Contact Angle analysis and sessile drop method respectively. FTIR spectral analysis was done to investigate the effect of plasma treatment on the chemical structure on the surface. The results of the wettability study showed that the argon plasma treatment of the fibre surface increased its hydrophobicity while nitrogen plasma treatment resulted in the reduction of contact angle.


2016 ◽  
Vol 26 (10) ◽  
pp. 2770-2783 ◽  
Author(s):  
E. de WILDE ◽  
I. BELLEMANS ◽  
M. CAMPFORTS ◽  
M. GUO ◽  
B. BLANPAIN ◽  
...  

2014 ◽  
Vol 59 (1) ◽  
pp. 282-286 ◽  
Author(s):  
B. Oleksiak ◽  
J. Łabaj ◽  
J. Wieczorek ◽  
A. Blacha-Grzechnik ◽  
R. Burdzik

Abstract The study involved measurements of surface tension of liquid binary copper-bismuth alloys with respect to their chemical composition and temperature as well as investigations of the liquid alloy - refractory material - gaseous phase system wettability using usual refractory materials, i.e. aluminium oxide, magnesium oxide and graphite. The experiments were performed with the use of sessile drop method and a high-temperature microscope coupled with a camera and a computer was utilised.


2014 ◽  
Vol 675-677 ◽  
pp. 115-119 ◽  
Author(s):  
Hai Tao Wang

An experimental method has been developed to determine the wettability, i.e., the contact angle, of a CO2-reservoir brine-reservoir rock system at high pressures and high temperature using the axisymmetric drop shape analysis (ADSA) technique for the sessile drop case. The laboratory experiments were conducted for dynamic contact angle of CO2-reservoir brine-reservoir rock covering three interesting salinities (0 mg/L, 14224.2 mg/L and 21460.6 mg/L) at P=6–35 MPa and T=97.5 °C. For pure water system, θad (static advancing contact angel) increases from 71.69° to 107.1° as pressure of CO2 increases from 6 MPa to 35 MPa. θad decreases from 71.48° to 42.01° for the 1# brine system and from 51.21° to 23.61° for the 2# brine system as pressure of CO2 increases from 6 MPa to 35 MPa. θad for 2# brine system (21460.6 mg/L) is lower than that for 1# brine system (14224.2 mg/L) under the each same pressure.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4117
Author(s):  
Artur Kudyba ◽  
Shahid Akhtar ◽  
Inge Johansen ◽  
Jafar Safarian

The valorization of aluminum dross for Al recovery was performed via its mixing with metallic copper to produce Al-Cu alloys. This approach was with the intention of establishing a new smelting process to treat the dross with Cu scrap use. To evaluate the high temperature interaction of the materials, the wettability of a Cu-containing aluminum alloy with the non-metallic components of the dross was studied by the sessile drop method. It was found that the wetting was weak via temperature changes at 973–1373 K, and consequently no proper metal separation occurred. To better separate the metallic and non-metallic phases with larger density differences, a higher Cu portion was considered to obtain a significantly denser metallic phase, and it was found that partial separation of the Al in an Al-Cu alloy is possible. The complete separation of the metallic components of the dross was, however, experienced by the dross and copper melting with the addition of pre-melted calcium aluminate slags at elevated temperatures. It was found that Al-Cu alloys were produced and separated from the adjacent slags, and the aluminum oxide of the dross ended up in the slag phase. Moreover, the characteristics of the produced slags depend on the process charge.


Holzforschung ◽  
2004 ◽  
Vol 58 (1) ◽  
pp. 22-31 ◽  
Author(s):  
M. Šernek ◽  
F. A. Kamke ◽  
W. G. Glasser

Abstract The surface inactivation of two wood species, yellow poplar (Liriodendron tulipifera) and southern pine (Pinus taeda), was studied following high temperature drying. Surface analysis involved X-ray photoelectron spectroscopy, sessile drop wettability and fracture mechanics of the adhesively-jointed surfaces. The results showed that wood drying at high temperature (i.e., >160 to 180 °C) caused modifications in surface composition. The oxygen to carbon ratio (O/C) decreased and the ratio of carbon atoms bonded to other carbon or to hydrogen atoms vis-à-vis carbons bonded to oxygen atoms (i.e., the C1/C2 ratio) increased with drying temperature. In addition, the contact angle increased with the temperature of exposure, but decreased with time. A dependence on wood species was evident: southern pine surfaces always exhibited higher contact angles than yellow poplar. Also, the rate of contact angle decline with time, dθ/dt, was found to vary with surface composition: this rate corresponded to O/C ratio-changes, especially in the case of southern pine. Southern pine was most susceptible to inactivation particularly when bonded with PF adhesive. Yellow poplar surfaces did not show significant inactivation when exposed to drying temperatures below ca. 180 °C. The results are explained by a relative enrichment of wood surfaces with non-polar substances, hydrophobic extractives and volatile organic compounds that 'become visually evident during the drying process at temperatures above ca. 160 °C. Little change was observed if drying temperatures remained below 150 °C.


2008 ◽  
Vol 495 (1-2) ◽  
pp. 8-13 ◽  
Author(s):  
F. Millot ◽  
V. Sarou-Kanian ◽  
J.-C. Rifflet ◽  
B. Vinet

2012 ◽  
Vol 35 (1) ◽  
pp. 63-73 ◽  
Author(s):  
MANISH PATEL ◽  
KUMAR SAURABH ◽  
V V BHANU PRASAD ◽  
J SUBRAHMANYAM

Sign in / Sign up

Export Citation Format

Share Document