Effect of sintering temperature on thermal stability of Zn0.2Fe1.05NiMn0.75O4 ceramic materials by homogeneous co-precipitation method

2016 ◽  
Vol 28 (1) ◽  
pp. 190-196 ◽  
Author(s):  
Xianxian Xie ◽  
Junhua Wang ◽  
Long Chen ◽  
Zhenhua Hu ◽  
Shiyou Yan ◽  
...  
2012 ◽  
Vol 56 (3) ◽  
pp. 568-572 ◽  
Author(s):  
ChunHui Dong ◽  
GaoXue Wang ◽  
Lei Shi ◽  
DangWei Guo ◽  
ChangJun Jiang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3717
Author(s):  
Jae-Young Jung ◽  
Soung-Soo Yi ◽  
Dong-Hyun Hwang ◽  
Chang-Sik Son

The precursor prepared by co-precipitation method was sintered at various temperatures to synthesize crystalline manganese tungstate (MnWO4). Sintered MnWO4 showed the best crystallinity at a sintering temperature of 800 °C. Rare earth ion (Dysprosium; Dy3+) was added when preparing the precursor to enhance the magnetic and luminescent properties of crystalline MnWO4 based on these sintering temperature conditions. As the amount of rare earth ions was changed, the magnetic and luminescent characteristics were enhanced; however, after 0.1 mol.%, the luminescent characteristics decreased due to the concentration quenching phenomenon. In addition, a composite was prepared by mixing MnWO4 powder, with enhanced magnetism and luminescence properties due to the addition of dysprosium, with epoxy. To one of the two prepared composites a magnetic field was applied to induce alignment of the MnWO4 particles. Aligned particles showed stronger luminescence than the composite sample prepared with unsorted particles. As a result of this, it was suggested that it can be used as phosphor and a photosensitizer by utilizing the magnetic and luminescent properties of the synthesized MnWO4 powder with the addition of rare earth ions.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4021
Author(s):  
Andrés Esteban Cerón Cerón Cortés ◽  
Anja Dosen ◽  
Victoria L. Blair ◽  
Michel B. Johnson ◽  
Mary Anne White ◽  
...  

Materials from theA2M3O12 family are known for their extensive chemical versatility while preserving the polyhedral-corner-shared orthorhombic crystal system, as well as for their consequent unusual thermal expansion, varying from negative and near-zero to slightly positive. The rarest are near-zero thermal expansion materials, which are of paramount importance in thermal shock resistance applications. Ceramic materials with chemistry Al2−xInxW3O12 (x = 0.2–1.0) were synthesized using a modified reverse-strike co-precipitation method and prepared into solid specimens using traditional ceramic sintering. The resulting materials were characterized by X-ray powder diffraction (ambient and in situ high temperatures), differential scanning calorimetry and dilatometry to delineate thermal expansion, phase transitions and crystal structures. It was found that the x = 0.2 composition had the lowest thermal expansion, 1.88 × 10−6 K−1, which was still higher than the end member Al2W3O12 for the chemical series. Furthermore, the AlInW3O12 was monoclinic phase at room temperature and transformed to the orthorhombic form at ca. 200 °C, in contrast with previous reports. Interestingly, the x = 0.2, x = 0.4 and x = 0.7 materials did not exhibit the expected orthorhombic-to-monoclinic phase transition as observed for the other compositions, and hence did not follow the expected Vegard-like relationship associated with the electronegativity rule. Overall, compositions within the Al2−xInxW3O12 family should not be considered candidates for high thermal shock applications that would require near-zero thermal expansion properties.


2014 ◽  
Vol 895 ◽  
pp. 319-322
Author(s):  
Lim Kean Pah ◽  
Abdul Halim Shaari ◽  
Chen Soo Kien ◽  
Chin Hui Wei ◽  
Albert Gan ◽  
...  

In this work, we report the effect of sintering temperature (900°C, 1000°C, 1100°C and 1200°C) on the electrical and magnetotransport properties of polycrystalline La0.67Sr0.33MnO3 (LSMO). Single phase of LSMO hexagonal structure (R-3c) accompanied with minor phases was successfully synthesized by co-precipitation method. With increasing sintering temperature, grain growth was promoted and grain connectivity was improved. It was found that an enhancement of resistivity on smaller grain size was due to larger grain surface over volume (grain boundaries effect). The shifting of the metal-insulator transition (TMI) to higher temperature was also responsible for observed changes in physical properties. TMI of 900°C, 1000°C and 1100°C were 232 K, 278 K and 298 K respectively however 1200°C was out of measurement range (higher than 300 K). In summary, CP900 with smaller grain size distribution (~200 nm) displayed the highest resistivity and MR% of -19.2% (at 80 K, 10 kG).


2016 ◽  
Vol 51 (4) ◽  
pp. 261-270
Author(s):  
FK Rony ◽  
SK Ray ◽  
A Hoque ◽  
M Asaduzzaman ◽  
S Sultana ◽  
...  

Galvanizing industries of Bangladesh produce profuse amount of environmentally hazardous solid waste materials like zinc dross which contains significant amount of valuable zinc and harmful heavy lead. Zinc was extracted as zinc chloride (ZnCl2) from zinc dross. Zinc stearate (ZnSt2) samples were prepared by precipitation method from stearic acid, sodium hydroxide and ZnCl2 by varying the amount of the reagents and product yield found within the range 96.06-99.18%. Characteristic peaks of ZnSt2 were investigated by Fourier Transform Infrared Spectroscopy (FTIR). Differential Scanning Calorimeter (DSC) onset curve assigned accurate melting point within the range 122.84-124.03°C. Surface morphology of ZnSt2 was observed by Scanning Electron Microscope (SEM) and products had semi-crystalline structure. Thermal stability of ZnSt2 was evaluated by Thermo-gravimetric Analyzer (TGA) that complied with literature. A combination of ZnSt2 and Calcium stearate (CaSt2) at 1:1 ratio was used as thermal stabilizer in the powder commercial grade PVC resin and performed better thermal stability. The dehydrochlorination temperature of PVC with mixed stearates was 344.67±1.04°C for 10% (w/w) loading whereas for PVC, PVC with 10% (w/w) ZnSt2 and PVC with 10% (w/w) CaSt2, it was 269.83±1.04°C, 317.33±1.26°C and 323.33±2.08°C respectively.Bangladesh J. Sci. Ind. Res. 51(4), 261-270, 2016


2006 ◽  
Vol 05 (02n03) ◽  
pp. 265-271
Author(s):  
MENG KUI WANG ◽  
YU QIANG YANG

The preparing process and the properties of thick-film double-based thermo-sensitive material were studied. The preparing steps were as follows: (i) preparing Ba 1-x Sr x TiO 3 micro-powders with chemical co-precipitation method; (ii) adding dispersants and surface active agents into crushing medium powders to prepare Ba 1-x Sr x TiO 3 nanopowders; (iii) preparing V 2 O 3-based micro-powders; (iv) mixing Ba 1-x Sr x TiO 3 nanopowders, V 2 O 3-based micro-powders, donor impurities, acceptor impurities and micro additives according to a certain ratio to make thick-film thermo-sensitive ceramic material. The presintering and sintering temperature of the prepared PTC ceramics were both reduced, which is very meaningful in using cheaper SiC instead of more expensive MoSi 2, prolonging the kiln's life, and lowering the production cost. The samples we prepared did not contain PbO , so they are safe to the environment.


2013 ◽  
Vol 587 ◽  
pp. 17-20 ◽  
Author(s):  
Ishikawa Kunio

Inorganic component of bone is not hydroxyapatite but carbonate apatite. Although pure carbonate apatite (CO3Ap) has not been prepared due to the limited thermal stability of CO3Ap, dissolution - precipitation method using precursor block allows fabrication of pure CO3Ap. Fabrication of CO3Ap, cell response, tissue response and improvement of CO3Ap will be discussed.


2007 ◽  
Vol 14 (01) ◽  
pp. 117-122 ◽  
Author(s):  
JIEGUANG SONG ◽  
LIANMENG ZHANG ◽  
JUNGUO LI ◽  
JIANRONG SONG

ZrB 2 has some excellent performances, but it is easily oxidized at high temperatures to impact the high-temperature strength, which restricts its applied range. To protect from the oxidization and improve the strength of ZrB 2 at high temperature, the surface of ZrB 2 particles is coated with the Al ( OH )3– Y ( OH )3 shell to synthesize ZrB 2@ Al ( OH )3– Y ( OH )3 core–shell composite particles. Through the thermodynamic and kinetic analyses of the heterogeneous nucleation and homogeneous nucleation, the concentration product of precursor ion ( Y 3+ or Al 3+) and OH - (Qi) must be greater than the solubility product (K sp ), respectively; the conditions of Y 3+ and Al 3+ are reached to produce Al ( OH )3– Y ( OH )3 shell on the ZrB 2 surface between the Y 3+ line and the AlO 2- line. Through TEM and XRD analyses, ZrB 2@ Al ( OH )3– Y ( OH )3 core–shell composite particles are successfully synthesized by the co-precipitation method, the shell layer quality is better at pH = 9, which established the foundation for preparing high-performance YAG / ZrB 2 and Al 2 O 3– YAG / ZrB 2 multiphase ceramic materials.


2016 ◽  
Vol 6 (23) ◽  
pp. 8222-8233 ◽  
Author(s):  
Yujie Xie ◽  
Yun Guo ◽  
Yanglong Guo ◽  
Li Wang ◽  
Wangcheng Zhan ◽  
...  

The La0.4–MnOx catalyst prepared by using the co-precipitation method exhibited excellent activity and thermal stability for propane deep oxidation.


Sign in / Sign up

Export Citation Format

Share Document