Effect of annealing temperature on structural, optical and humidity sensing properties of indium tin oxide (ITO) thin films

2017 ◽  
Vol 28 (12) ◽  
pp. 8460-8466 ◽  
Author(s):  
M. Premkumar ◽  
S. Vadivel
2018 ◽  
Vol 18 (18) ◽  
pp. 7358-7364 ◽  
Author(s):  
Jack R. McGhee ◽  
Jagdeep S. Sagu ◽  
Darren J. Southee ◽  
K. G. U. Wijayantha

2011 ◽  
Vol 343-344 ◽  
pp. 116-123
Author(s):  
Yu Ming Peng ◽  
Yan Kuin Su ◽  
Cheng Jye Chu ◽  
Ru Yuan Yang ◽  
Ruei Ming Huang

In this paper, the indium tin oxide (ITO) thin films were prepared by a sol-gel spin coating method and then annealed under different temperatures (400, 500 and 550°C) in a mixture atmosphere of 3.75% H2 with 96.25% N2 gases. The microstructure, optical and electrical properties of the prepared films were investigated and discussed. The XRD patterns of the ITO thin films indicated the main peak of the (222) plane and showed a high degree of crystallinity with an increase of the annealing temperature. In addition, due to the pores existing in the prepared films, the optical and electrical properties of the prepared films are degraded through the sol-gel process. Thus, the best transmittance of 70.0 %in the visible wavelength region and the lowest resistivity of about 1.1×10-2 Ω-cm were obtained when the prepared film was annealed at 550°C.


2019 ◽  
Vol 13 (28) ◽  
pp. 44-51
Author(s):  
Ameer F. Abdulameer

This study describe the effect of temperature on the opticalproperties of nickel(ii) phthalocyanine tetrasulfonic acid tetrasodiumsalt (NiPcTs) organic thin films which are prepared by spin coatingon indium tin oxide (ITO-glass). The optical absorption spectra ofthese thin films are measured. Present studies reveal that the opticalband gap energies of NiPcTs thin films are dependent on theannealing temperatures. The optical band gap decreases with increasein annealing temperature, then increased when the temperature risingto 473K. To enhance the results of Uv-Vis measurements and getmore accurate values of optical energy gaps; the Photoluminescencespectra of as-deposited and annealed NiPcTs thin films was studied.FTIR measurements for NiPcTs thin films also carried out in thiswork and gave good information about the NiPcTs bonds and itslocations as a compared with H2Pc as a reference.


Author(s):  
Emerson Roberto Santos ◽  
Thiago de Carvalho Fullenbach ◽  
Marina Sparvoli Medeiros ◽  
Luis da Silva Zambom ◽  
Roberto Koji Onmori ◽  
...  

Transparent conductive oxides (TCOs) known as indium tin oxide (ITO) and fluorine tin oxide (FTO) deposited on glass were compared by different techniques and also as anodes in organic light-emitting diode (OLED) devices with same structure. ITO produced at laboratory was compared with the commercial one manufactured by different companies: Diamond Coatings, Displaytech and Sigma-Aldrich, and FTO produced at laboratory was compared with the commercial one manufactured by Flexitec Company. FTO thin films produced at laboratory presented the lowest performance measured by Hall effect technique and also by I-V curve of OLED device with low electrical current and high threshold voltage. ITO thin films produced at laboratory presented elevated sheet resistance in comparison with commercial ITOs (approximately one order of magnitude greater), that can be related by a high number of defects as discontinuity of the chemical lattice or low crystalline structure. In the assembly of OLED devices with ITO and FTO produced at laboratory, neither presented luminances. ITO manufactured by Sigma-Aldrich company presented better electrical and optical characteristics, as low electrical resistivity, good wettability, favorable transmittance, perfect physicalchemical stability and lowest threshold voltage (from 3 to 4.5 V) for OLED devices.


2010 ◽  
Vol 57 (6(1)) ◽  
pp. 1794-1798 ◽  
Author(s):  
Jong-Woong Kim ◽  
Jangwoo Choi ◽  
Sung-Jei Hong ◽  
Jeong-In Han ◽  
Young-Sung Kim

2021 ◽  
Author(s):  
Longfei Song ◽  
Tony Schenk ◽  
Emmanuel Defay ◽  
Sebastjan Glinsek

Highly conductive (conductivity 620 S cm−1) and transparent ITO thin films are achieved at low temperature (350 °C) through effective combustion solution processing via multistep coating. The properties show potential for next generation flexible and transparent electronics.


2020 ◽  
Vol 392 ◽  
pp. 125768 ◽  
Author(s):  
Vikas Kumar ◽  
Vishnu Chauhan ◽  
Jagjeevan Ram ◽  
Rashi Gupta ◽  
Shalendra Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document