Fine-tuning of stannic oxide anodes’ material properties through calcination

Author(s):  
D. Lakshmi ◽  
M. Infanta Diana ◽  
B. Nalini ◽  
G. G. Soundarya ◽  
P. Priyanka ◽  
...  
Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1035
Author(s):  
Bryer C. Sousa ◽  
Caitlin Walde ◽  
Victor K. Champagne, Jr. ◽  
Aaron T. Nardi ◽  
Richard D. Sisson, Jr. ◽  
...  

In this work, three commercially available aluminum alloy systems (Al 2024, Al 6061, and Al 7075) were considered to explicitly capture the differences in material properties associated with a rapidly solidified, gas-atomized particulate feedstock as compared with their conventionally cast counterparts. Differences between the microstructural, thermodynamic, mechanical, and kinetic behaviors associated with gas-atomized and conventionally bulk counterparts have been tacitly assumed by the cold spray community. However, many researchers continue to utilize legacy properties from bulk materials when simulating particle impact phenomena in silico, for example. By way of recognizing the fact that bulk material properties may not serve as substitutes for gas-atomized powder property input parameters for cold spray process simulation and computation in silico, enhanced cold spray research and development will be more easily achieved. Therefore, understanding the feedstock powder characteristics for use in cold spray can lead to fine-tuning the properties of cold spray consolidations. Optical microscopy, scanning electron microscopy, nanoindentation, microhardness, differential scanning calorimetry, elemental analysis, and cooling rate calculations were utilized. This work confirms preliminary findings that powder alloys may not be treated the same way as their bulk counterparts in so far as the enactment of heat treatment processing parameters are concerned. Specifically, vast discrepancies were found in the grain size, secondary phases, and mechanical behavior between the powder and cast versions of each alloy.


Author(s):  
Martin Roeb ◽  
Nils Gathmann ◽  
Martina Neises ◽  
Christian Sattler ◽  
Robert Pitz-Paal

A two-step thermo-chemical cycle for solar production of hydrogen from water has been developed and investigated. It is based on metal oxide redox pair systems, which can split water molecules by abstracting oxygen atoms and reversibly incorporating them into their lattice. After proof-of-principle, successful experimental demonstration of several cycles of alternating hydrogen and oxygen production, and elaboration of process strategies presented in previous contributions, the present work describes a thermodynamic study aiming at the fine tuning of the redox system, at the improvement of process conditions, and at the evaluation of the potential of the process. For the redox material the oxygen uptake capability is an essential characteristic, because it is directly connected to the amount of hydrogen which can be produced. In order to evaluate the maximum oxygen uptake potential of a coating material and to be able to find new redox materials theoretical considerations based on thermodynamic laws and properties are helpful and faster than actual tests. Through thermodynamic calculations it is possible to predict the theoretical maximum output of H2 from a specific redox-material under certain conditions. Calculations were focussed on the two mixed iron oxides nickel-iron oxide and zinc-iron oxide. In the simulation the amount of oxygen in the redox-material is calculated before and after the splitting step on the basis of laws of thermodynamics and available material properties for the mixed-iron oxides used. For the simulation the commercial Software FactSage and available databases for the necessary material properties were used. The analysis showed that a maximum hydrogen yield is achieved if the regeneration temperature is raised to the limits of the operation range, if the temperature for the water splitting is lowered below 800 °C and if the partial pressure of oxygen during regeneration is decreased to the lower limits of the operational range. The increased hydrogen yield at lower splitting temperature of about 800 °C could not be confirmed in experimental results, where a higher splitting temperature led to a higher hydrogen yield. As a consequence it can be stated that kinetics must play an important role especially in the splitting step.


MRS Bulletin ◽  
2004 ◽  
Vol 29 (2) ◽  
pp. 96-99 ◽  
Author(s):  
Wilson C.K. Poon

AbstractThis article reviews recent advances in understanding amorphous glassy states in dense colloidal suspensions with or without short-range interparticle attractions. Experiments, theory, and simulation show that two kinds of glassy states are possible, dominated respectively by repulsion and attraction. Under suitable conditions, a small change in the interparticle potential can lead to a transition between these two kinds of colloidal glasses that entails sharp changes in material properties such as the shear modulus. This may provide novel routes for fine-tuning the properties of industrial pastes and slurries.


Author(s):  
C.L. Briant

Grain boundary segregation is the process by which solute elements in a material diffuse to the grain boundaries, become trapped there, and increase their local concentration at the boundary over that in the bulk. As a result of this process this local concentration of the segregant at the grain boundary can be many orders of magnitude greater than the bulk concentration of the segregant. The importance of this problem lies in the fact that grain boundary segregation can affect many material properties such as fracture, corrosion, and grain growth.One of the best ways to study grain boundary segregation is with Auger electron spectroscopy. This spectroscopy is an extremely surface sensitive technique. When it is used to study grain boundary segregation the sample must first be fractured intergranularly in the high vacuum spectrometer. This fracture surface is then the one that is analyzed. The development of scanning Auger spectrometers have allowed researchers to first image the fracture surface that is created and then to perform analyses on individual grain boundaries.


Author(s):  
Brian Ralph ◽  
Barlow Claire ◽  
Nicola Ecob

This brief review seeks to summarize some of the main property changes which may be induced by altering the grain structure of materials. Where appropriate an interpretation is given of these changes in terms of current theories of grain boundary structure, and some examples from current studies are presented at the end of this paper.


ASHA Leader ◽  
2017 ◽  
Vol 22 (6) ◽  
Author(s):  
Christi Miller
Keyword(s):  

2012 ◽  
Vol 82 (3) ◽  
pp. 216-222 ◽  
Author(s):  
Venkatesh Iyengar ◽  
Ibrahim Elmadfa

The food safety security (FSS) concept is perceived as an early warning system for minimizing food safety (FS) breaches, and it functions in conjunction with existing FS measures. Essentially, the function of FS and FSS measures can be visualized in two parts: (i) the FS preventive measures as actions taken at the stem level, and (ii) the FSS interventions as actions taken at the root level, to enhance the impact of the implemented safety steps. In practice, along with FS, FSS also draws its support from (i) legislative directives and regulatory measures for enforcing verifiable, timely, and effective compliance; (ii) measurement systems in place for sustained quality assurance; and (iii) shared responsibility to ensure cohesion among all the stakeholders namely, policy makers, regulators, food producers, processors and distributors, and consumers. However, the functional framework of FSS differs from that of FS by way of: (i) retooling the vulnerable segments of the preventive features of existing FS measures; (ii) fine-tuning response systems to efficiently preempt the FS breaches; (iii) building a long-term nutrient and toxicant surveillance network based on validated measurement systems functioning in real time; (iv) focusing on crisp, clear, and correct communication that resonates among all the stakeholders; and (v) developing inter-disciplinary human resources to meet ever-increasing FS challenges. Important determinants of FSS include: (i) strengthening international dialogue for refining regulatory reforms and addressing emerging risks; (ii) developing innovative and strategic action points for intervention {in addition to Hazard Analysis and Critical Control Points (HACCP) procedures]; and (iii) introducing additional science-based tools such as metrology-based measurement systems.


Sign in / Sign up

Export Citation Format

Share Document