Colloidal Glasses

MRS Bulletin ◽  
2004 ◽  
Vol 29 (2) ◽  
pp. 96-99 ◽  
Author(s):  
Wilson C.K. Poon

AbstractThis article reviews recent advances in understanding amorphous glassy states in dense colloidal suspensions with or without short-range interparticle attractions. Experiments, theory, and simulation show that two kinds of glassy states are possible, dominated respectively by repulsion and attraction. Under suitable conditions, a small change in the interparticle potential can lead to a transition between these two kinds of colloidal glasses that entails sharp changes in material properties such as the shear modulus. This may provide novel routes for fine-tuning the properties of industrial pastes and slurries.

1986 ◽  
Vol 108 (2) ◽  
pp. 141-148 ◽  
Author(s):  
H. C. Park ◽  
Y. K. Liu ◽  
R. S. Lakes

The elastic Young’s modulus and shear modulus of bone-particle impregnated polymethylmethacrylate (PMMA) has been measured experimentally at room temperature as a function of bone particle concentration. It was found that the moduli increased with increasing bone particle content. This increase was less than the stiffness increase predicted by higher-order composite theory [1, 2] under the assumption of perfect bonding between particles and matrix. It was concluded that a bond existed but that it was not a perfect bond.


2020 ◽  
Vol 21 (21) ◽  
pp. 8085
Author(s):  
Giacomo Forti ◽  
Andrea Nitti ◽  
Peshawa Osw ◽  
Gabriele Bianchi ◽  
Riccardo Po ◽  
...  

The introduction of the IDIC/ITIC families of non-fullerene acceptors has boosted the photovoltaic performances of bulk-heterojunction organic solar cells. The fine tuning of the photophysical, morphological and processability properties with the aim of reaching higher and higher photocurrent efficiencies has prompted uninterrupted worldwide research on these peculiar families of organic compounds. The main strategies for the modification of IDIC/ITIC compounds, described in several contributions published in the past few years, can be summarized and classified into core modification strategies and end-capping group modification strategies. In this review, we analyze the more recent advances in this field (last two years), and we focus our attention on the molecular design proposed to increase photovoltaic performance with the aim of rationalizing the general properties of these families of non-fullerene acceptors.


2010 ◽  
Vol 160-162 ◽  
pp. 1691-1698 ◽  
Author(s):  
Zhi Xin Huang ◽  
Cai Fu Qian ◽  
Peng Liu ◽  
Xu Liang Deng ◽  
Qing Cai ◽  
...  

This study aimed at investigating the effects of the post material properties on the maximum stress in the root and maximum deformation of the restorative system. Effects of material properties of fiber post on the maximum equivalent stress in the root and the maximum deformation of the restorative system were numerically investigated. Results show that the maximum equivalent stress in the root can be decreased by 8.3% and the maximum deformation of the restorative system decreased by 10% compared with corresponding maximum values if changing Young’s modulus, Shear modulus and Poisson’s ratio in the range studied here. The maximum equivalent stress in the root is more sensitive to Young’s modulus and Poisson’s ratio while the deformation of the restorative system is more seriously affected by the Shear modulus of the post material.


Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1035
Author(s):  
Bryer C. Sousa ◽  
Caitlin Walde ◽  
Victor K. Champagne, Jr. ◽  
Aaron T. Nardi ◽  
Richard D. Sisson, Jr. ◽  
...  

In this work, three commercially available aluminum alloy systems (Al 2024, Al 6061, and Al 7075) were considered to explicitly capture the differences in material properties associated with a rapidly solidified, gas-atomized particulate feedstock as compared with their conventionally cast counterparts. Differences between the microstructural, thermodynamic, mechanical, and kinetic behaviors associated with gas-atomized and conventionally bulk counterparts have been tacitly assumed by the cold spray community. However, many researchers continue to utilize legacy properties from bulk materials when simulating particle impact phenomena in silico, for example. By way of recognizing the fact that bulk material properties may not serve as substitutes for gas-atomized powder property input parameters for cold spray process simulation and computation in silico, enhanced cold spray research and development will be more easily achieved. Therefore, understanding the feedstock powder characteristics for use in cold spray can lead to fine-tuning the properties of cold spray consolidations. Optical microscopy, scanning electron microscopy, nanoindentation, microhardness, differential scanning calorimetry, elemental analysis, and cooling rate calculations were utilized. This work confirms preliminary findings that powder alloys may not be treated the same way as their bulk counterparts in so far as the enactment of heat treatment processing parameters are concerned. Specifically, vast discrepancies were found in the grain size, secondary phases, and mechanical behavior between the powder and cast versions of each alloy.


Author(s):  
Robert A. Jurf ◽  
Steven C. Butner

Recent advances in COI’s oxide-oxide CMC materials will be presented including basic processing steps, updated material properties, and fabrication techniques. Material properties of COI’s alumino-silicate system reinforced with various oxide fabrics will be compared, along with progress in developing a 1200°C oxide matrix system for future turbine system applications. Examples of fabricated hardware, including a subscale combustion liner, will be shown. Recent test and evaluation data will be provided.


2018 ◽  
Vol 98 (1) ◽  
pp. 477-504 ◽  
Author(s):  
Robert Dantzer

Because of the compartmentalization of disciplines that shaped the academic landscape of biology and biomedical sciences in the past, physiological systems have long been studied in isolation from each other. This has particularly been the case for the immune system. As a consequence of its ties with pathology and microbiology, immunology as a discipline has largely grown independently of physiology. Accordingly, it has taken a long time for immunologists to accept the concept that the immune system is not self-regulated but functions in close association with the nervous system. These associations are present at different levels of organization. At the local level, there is clear evidence for the production and use of immune factors by the central nervous system and for the production and use of neuroendocrine mediators by the immune system. Short-range interactions between immune cells and peripheral nerve endings innervating immune organs allow the immune system to recruit local neuronal elements for fine tuning of the immune response. Reciprocally, immune cells and mediators play a regulatory role in the nervous system and participate in the elimination and plasticity of synapses during development as well as in synaptic plasticity at adulthood. At the whole organism level, long-range interactions between immune cells and the central nervous system allow the immune system to engage the rest of the body in the fight against infection from pathogenic microorganisms and permit the nervous system to regulate immune functioning. Alterations in communication pathways between the immune system and the nervous system can account for many pathological conditions that were initially attributed to strict organ dysfunction. This applies in particular to psychiatric disorders and several immune-mediated diseases. This review will show how our understanding of this balance between long-range and short-range interactions between the immune system and the central nervous system has evolved over time, since the first demonstrations of immune influences on brain functions. The necessary complementarity of these two modes of communication will then be discussed. Finally, a few examples will illustrate how dysfunction in these communication pathways results in what was formerly considered in psychiatry and immunology to be strict organ pathologies.


2018 ◽  
Vol 510 ◽  
pp. 492-506 ◽  
Author(s):  
H. Hassanzadeh Afrouzi ◽  
Abouzar Moshfegh ◽  
Ashkan Javadzadegan ◽  
Maryam Mohammadi ◽  
Mousa Farhadi

Sign in / Sign up

Export Citation Format

Share Document