Microwave absorption efficiency of double-layer corn husk-based microwave absorber

Author(s):  
Soumya Sundar Pattanayak ◽  
S. H. Laskar ◽  
Swagatadeb Sahoo
Author(s):  
Soumya Sundar Pattanayak ◽  
Shahedul Haque Laskar ◽  
Swagatadeb Sahoo

Abstract Design and development of cheap and eco-friendly microwave absorber are one of the challenging and interesting topics for the scientific community nowadays. This paper proposes the design and fabrication of corn husk-based low cost, light-weight, and flexible microwave absorber treated as a promising eco-friendly microwave absorber. In this work, an extensive study on microwave absorption efficiency of corn husk at different thicknesses is performed in the frequency range of 1–20 GHz. The absorber at 5.21 mm thickness possesses a return loss (RL) of −32.72247 dB at 2.255 GHz. The measured RL values agree well with simulated ones, indicating the utility of proposed absorber for various practical microwave absorption applications.


Author(s):  
Soumya Sundar Pattanayak ◽  
S. H. Laskar ◽  
Swagatadeb Sahoo

Abstract The ever-increasing use of electronic devices leads to a dangerous upsurge in the emission of microwave radiation; this has drawn appreciable concern in the fabrication of eco-friendly microwave absorber (MA) and it can be a prospective alternative. Present work, in the quest for possible alternatives, explores carbon-rich agricultural residues such as dry banana leaves as a microwave-absorbing material. The variation of microwave absorption efficiency with an increase in the percentage of resin has been already reported. An extensive study on the microwave absorption efficiency of dried banana leaves with sample preparation and reflectivity analysis by hardware measurement, and simulative analysis using CST microwave studio suite for different thicknesses in the frequency range of 1–20 GHz has been also explored in the present work. Single-layer MA thickness variation establishes different microwave absorption performance.


Author(s):  
Jun Zhou ◽  
Fan Guo ◽  
Jialiang Luo ◽  
Gazi Hao ◽  
Guigao Liu ◽  
...  

Developing a low-frequency tunable microwave absorber for the normal use of sophisticated electric devices is an urgent need for electromagnetic pollution. Herein, we report the designed synthesis of a three-dimensional...


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 663 ◽  
Author(s):  
Baowen Lou ◽  
Zhuangzhuang Liu ◽  
Aimin Sha ◽  
Meng Jia ◽  
Yupeng Li

Excessive usage of non-renewable natural resources and massive construction wastes put pressure on the environment. Steel slags, the main waste material from the metal industry, are normally added in asphalt concrete to replace traditional aggregate. In addition, as a typical microwave absorber, steel slag has the potential to transfer microwave energy into heat, thus increasing the limited self-healing ability of asphalt mixture. This paper aims to investigate the microwave absorption potentials of steel slag and the effect of its addition on road performance. The magnetic parameters obtained from a microwave vector network analyzer were used to estimate the potential use of steel slag as microwave absorber to heal cracks. Meanwhile, the initial self-healing temperature was further discussed according to the frequency sweeping results. The obvious porous structure of steel slag observed using scanning electron microscopy (SEM) had important impacts on the road performance of asphalt mixtures. Steel slag presented a worse effect on low-temperature crack resistance and water stability, while high-temperature stability can be remarkably enhanced when the substitution of steel slag was 60% by volume with the particle size of 4.75–9.5 mm. Overall, the sustainability of asphalt mixtures incorporating steel slag can be promoted due to its excellent mechanical and microwave absorption properties.


2020 ◽  
Vol 44 (33) ◽  
pp. 13962-13970
Author(s):  
Hengdong Ren ◽  
Jialin Ma ◽  
Jun Zhou ◽  
Xiangfeng Shu ◽  
Zhenying Liu ◽  
...  

A low-frequency microwave absorber was synthesized by using a microwave radiation method.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 809
Author(s):  
Rozhin Sadeghi ◽  
Abbas Sharifi ◽  
Marta Orlowska ◽  
Isabelle Huynen

The current research reports the preparation of a microwave absorber containing CoFe2O4/NiFe2O4/Carbon fiber (H/S/CF) coated with polypyrrole polymer (PPy@H/S/CF) through sol-gel and in-situ polymerization processes. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), vibrating sample magnetometer (VSM), and a vector network analyzer (VNA) are utilized to evaluate the features of the prepared composite. The microstructure analysis results revealed carbon fibers well decorated with submicron-size particles having hard/soft magnetic phases and thoroughly coated with polymer. The paraffin-based microwave absorber sample filled with 45 wt.% of PPy@H/S/CF has simultaneously both magnetic and dielectric losses in the 8.2–12.4  GHz frequency range. The absorber is used in a Salisbury screen configuration aiming at reducing the radar cross-section of objects. A minimum reflection loss of −55  dB at 10.6 GHz frequency with 5 GHz bandwidth is obtained for the sample with a 2  mm thickness. Different mechanisms, such as interfacial polarization, ferromagnetic resonance, and electron hopping, are the main factors for achieving such an appropriate microwave absorption. These results suggest that the PPy@H/S/CF composite is an ideal candidate for microwave absorption applications requiring high performance and low thickness.


Sign in / Sign up

Export Citation Format

Share Document