scholarly journals Feasibility, tailoring and properties of polyurethane/bioactive glass composite scaffolds for tissue engineering

2009 ◽  
Vol 20 (11) ◽  
pp. 2189-2195 ◽  
Author(s):  
Francesco Baino ◽  
Enrica Verné ◽  
Chiara Vitale-Brovarone
2019 ◽  
Vol 10 (3) ◽  
pp. 38 ◽  
Author(s):  
Hamasa Faqhiri ◽  
Markus Hannula ◽  
Minna Kellomäki ◽  
Maria Teresa Calejo ◽  
Jonathan Massera

This study reports on the processing of three-dimensional (3D) chitosan/bioactive glass composite scaffolds. On the one hand, chitosan, as a natural polymer, has suitable properties for tissue engineering applications but lacks bioactivity. On the other hand, bioactive glasses are known to be bioactive and to promote a higher level of bone formation than any other biomaterial type. However, bioactive glasses are hard, brittle, and cannot be shaped easily. Therefore, in the past years, researchers have focused on the processing of new composites. Difficulties in reaching composite materials made of polymer (synthetic or natural) and bioactive glass include: (i) The high glass density, often resulting in glass segregation, and (ii) the fast bioactive glass reaction when exposed to moisture, leading to changes in the glass reactivity and/or change in the polymeric matrix. Samples were prepared with 5, 15, and 30 wt% of bioactive glass S53P4 (BonAlive ®), as confirmed using thermogravimetric analysis. MicrO–Computed tomography and optical microscopy revealed a flaky structure with porosity over 80%. The pore size decreased when increasing the glass content up to 15 wt%, but increased back when the glass content was 30 wt%. Similarly, the mechanical properties (in compression) of the scaffolds increased for glass content up to 15%, but decreased at higher loading. Ions released from the scaffolds were found to lead to precipitation of a calcium phosphate reactive layer at the scaffold surface. This is a first indication of the potential bioactivity of these materials. Overall, chitosan/bioactive glass composite scaffolds were successfully produced with pore size, machinability, and ability to promote a calcium phosphate layer, showing promise for bone tissue engineering and the mechanical properties can justify their use in non-load bearing applications.


2006 ◽  
Vol 77A (2) ◽  
pp. 261-268 ◽  
Author(s):  
V.V. Meretoja ◽  
A.O. Helminen ◽  
J.J. Korventausta ◽  
V. Haapa-aho ◽  
J.V. Seppälä ◽  
...  

2019 ◽  
Vol 76 ◽  
pp. 464-472 ◽  
Author(s):  
Jovana Zvicer ◽  
Ana Medic ◽  
Djordje Veljovic ◽  
Sanja Jevtic ◽  
Sasa Novak ◽  
...  

2020 ◽  
Vol 1 (9) ◽  
pp. 3466-3475
Author(s):  
Raji Govindan ◽  
Sekar Karthi ◽  
Govindan Suresh Kumar ◽  
Easwaradas Kreedapathy Girija

A multifunctional Fe3O4 integrated polymer/phosphate glass composite scaffold is developed using a freeze drying technique for tissue engineering.


2016 ◽  
Vol 30 ◽  
pp. 319-333 ◽  
Author(s):  
Patrina S.P. Poh ◽  
Dietmar W. Hutmacher ◽  
Boris M. Holzapfel ◽  
Anu K. Solanki ◽  
Molly M. Stevens ◽  
...  

2021 ◽  
Author(s):  
Jing Yang ◽  
Chuanliang Cao ◽  
Pengren Huang ◽  
Aruna Prasopthum ◽  
Andy James Parsons ◽  
...  

3D printed bioactive glass or bioceramic particle reinforced composite scaffolds for bone tissue engineering currently suffer from low particle concentration (<50 wt%) hence low osteoconductivity. Meanwhile, composites with very high...


Sign in / Sign up

Export Citation Format

Share Document