scholarly journals Determination of glucose exchange rates and permeability of erythrocyte membrane in preeclampsia and subsequent oxidative stress-related protein damage using dynamic-19F-NMR

2017 ◽  
Vol 67 (2) ◽  
pp. 145-156 ◽  
Author(s):  
Elizabeth Dickinson ◽  
John R. P. Arnold ◽  
Julie Fisher
Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1768
Author(s):  
Miroslav Rievaj ◽  
Eva Culková ◽  
Damiána Šandorová ◽  
Zuzana Lukáčová-Chomisteková ◽  
Renata Bellová ◽  
...  

This short review deals with the properties and significance of the determination of selenium, which is in trace amounts an essential element for animals and humans, but toxic at high concentrations. It may cause oxidative stress in cells, which leads to the chronic disease called selenosis. Several analytical techniques have been developed for its detection, but electroanalytical methods are advantageous due to simple sample preparation, speed of analysis and high sensitivity of measurements, especially in the case of stripping voltammetry very low detection limits even in picomoles per liter can be reached. A variety of working electrodes based on mercury, carbon, silver, platinum and gold materials were applied to the analysis of selenium in various samples. Only selenium in oxidation state + IV is electroactive therefore the most of voltammetric determinations are devoted to it. However, it is possible to detect also other forms of selenium by indirect electrochemistry approach.


2021 ◽  
Vol 22 (8) ◽  
pp. 4009
Author(s):  
Maik Liedtke ◽  
Christin Völkner ◽  
Alexandra V. Jürs ◽  
Franziska Peter ◽  
Michael Rabenstein ◽  
...  

Niemann-Pick type C2 (NP-C2) disease is a rare hereditary disease caused by mutations in the NPC2 gene. NPC2 is a small, soluble protein consisting of 151 amino acids, primarily expressed in late endosomes and lysosomes (LE/LY). Together with NPC1, a transmembrane protein found in these organelles, NPC2 accomplishes the exclusion of cholesterol; thus, both proteins are essential to maintain cellular cholesterol homeostasis. Consequently, mutations in the NPC2 or NPC1 gene result in pathophysiological accumulation of cholesterol and sphingolipids in LE/LY. The vast majority of Niemann-Pick type C disease patients, 95%, suffer from a mutation of NPC1, and only 5% display a mutation of NPC2. The biochemical phenotype of NP-C1 and NP-C2 appears to be indistinguishable, and both diseases share several commonalities in the clinical manifestation. Studies of the pathological mechanisms underlying NP-C2 are mostly based on NP-C2 animal models and NP-C2 patient-derived fibroblasts. Recently, we established induced pluripotent stem cells (iPSCs), derived from a donor carrying the NPC2 mutations c.58G>T/c.140G>T. Here, we present a profile of pathophysiological in vitro features, shared by NP-C1 and NP-C2, of neural differentiated cells obtained from the patient specific iPSCs. Profiling comprised a determination of the NPC2 protein level, detection of cholesterol accumulation by filipin staining, analysis of oxidative stress, and determination of autophagy. As expected, the NPC2-deficient cells displayed a significantly reduced amount of NPC2 protein, and, accordingly, we observed a significantly increased amount of cholesterol. Most notably, NPC2-deficient cells displayed only a slight increase of reactive oxygen species (ROS), suggesting that they do not suffer from oxidative stress and express catalase at a high level. As a site note, comparable NPC1-deficient cells suffer from a lack of catalase and display an increased level of ROS. In summary, this cell line provides a valuable tool to gain deeper understanding, not only of the pathogenic mechanism of NP-C2, but also of NP-C1.


1992 ◽  
Vol 64 (20) ◽  
pp. 2456-2458 ◽  
Author(s):  
Geraldine. Thevenon-Emeric ◽  
John. Kozlowski ◽  
Zhongqi. Zhang ◽  
David L. Smith

PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e66418 ◽  
Author(s):  
Alessandro Ghezzo ◽  
Paola Visconti ◽  
Provvidenza M. Abruzzo ◽  
Alessandra Bolotta ◽  
Carla Ferreri ◽  
...  

Author(s):  
Beatrice L. Pool-Zobel ◽  
Salomon L. Abrahamse ◽  
Daniela Oberreuther ◽  
Sylvia Treptow-van Lishaut ◽  
Gerhard Rechkemmer

2012 ◽  
Vol 5 (2) ◽  
pp. 479-484 ◽  
Author(s):  
JAROMIR GUMULEC ◽  
MARTINA RAUDENSKA ◽  
MARIAN HLAVNA ◽  
TIBOR STRACINA ◽  
MARKETA SZTALMACHOVA ◽  
...  

2015 ◽  
Vol 93 (4) ◽  
pp. 385-395 ◽  
Author(s):  
Chandrabose Sureka ◽  
Thiyagarajan Ramesh ◽  
Vavamohaideen Hazeena Begum

The aim of the present study was to investigate the protective effects of Sesbania grandiflora flower (SGF) extract on erythrocyte membrane in Streptozotocin (STZ)-induced diabetic rats. Adult male albino rats of Wistar strain, weighing 190–220 g, were made diabetic by an intraperitonial administration of STZ (45 mg/kg). Normal and diabetic rats were treated with SGF, and diabetic rats were also treated with glibenclamide as drug control, for 45 days. In this study plasma insulin and haemoglobin levels were decreased and blood glucose, glycosylated haemoglobin, protein oxidation, lipid peroxidation markers, and osmotic fragility levels were increased in diabetic rats. Moreover, erythrocytes antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxide, glutathione reductase, glutathione-S-transferase, and glucose-6-phosphate dehydrogenase activities and non-enzymatic antioxidants such as vitamin C, vitamin E, reduced glutathione (GSH), and oxidized glutathione (GSSG) levels were altered. Similarly, the activities of total ATPases, Na+/K+-ATPase, Ca2+-ATPase, and Mg2+-ATPase were also decreased in the erythrocytes of diabetic rats. Administration of SGF to STZ-induced diabetic rats reduced blood glucose and glycosylated haemoglobin levels with increased levels of insulin and haemoglobin. Moreover, SGF reversed the protein and lipid peroxidation markers, osmotic fragility, membrane-bound ATPases activities, and antioxidant status in STZ-induced diabetic rats. These results suggest that SGF could provide a protective effect on diabetes by decreasing oxidative stress-associated diabetic complications.


Sign in / Sign up

Export Citation Format

Share Document