scholarly journals Long-term trends of oxygen concentration in the waters in bank and shelves of the Southern Japan Sea

Author(s):  
Tsuneo Ono

AbstractWhile multiple studies have investigated oxygen decrease in Japan Sea Proper Water (JSPW; > 300 m in depth), oxygen variation in continental slope and shelf waters (< 300 m) must also be investigated in order to assess its socioecological impacts. In this study, historical oxygen data in the waters of three continental shelves and a bank of Japan Sea, off-Awashima area (AW), Wakasa Bay (WB), East of Tsushima Straight (ETS), and Yamato Bank (YB), were collected and analyzed to assess temporal variation of oxygen in each region from 1960 to 2000s. Significant decreasing trends of oxygen were detected in the waters below 150 m depth in WB and YB, and below 300 m in AW, in the summer season. In winter, a decreasing trend of oxygen was detected throughout the water column from 300 m to the sea surface in WB and YB. In ETS, a deoxygenation trend was detected throughout the water column from the bottom to the sea surface in the summer season, while no trend was detected in winter. The results suggested that oxygen decreases in AW, WB, and YB were the consequence of the upward propagation of the deoxygenation signal from JSPW, while that of ETS was caused by horizontal propagation of deoxygenation signal from the East China Sea. Assuming that the observed trend will continue in future, it is predicted that part of the water in Tsushima Strait area will reach the general sublethal threshold of oxygen (134 μmol kg−1) by the end of this century.

2019 ◽  
Vol 60 (1) ◽  
pp. 25-39
Author(s):  
Ivana Violić ◽  
Davor Lučić ◽  
Ivona Milić Beran ◽  
Vesna Mačić ◽  
Branka Pestorić ◽  
...  

A semi- quantitative time series (2013-2017) was used to present the recent events of scyphomedusae appearance and abundance in the Boka Kotorska Bay, Montenegro, Southeast Adriatic. Six meroplanktonic species were recorded: Aurelia spp, Chrysaora hysoscella, Cotylorhiza tuberculata ̧ Discomedusa lobata, Drymonema dalmatinum and Rhizostoma pulmo. Among them, C. hysoscella and D. lobata dominated in the water column during winter and spring, forming dense aggregations in March and May, and February to May, respectively. Our description of the D. lobata blooms are actually the first known records of blooms for this species. C. tuberculata was observed in the Bay principally in August and September. The bloom was occurred only in 2017, being the first information of C. tuberculata mass appearance in this area. We hypothesized that global warming phenomena could trigger the observed changes, and in this respect, long-term trends of sea surface temperature (SST) fluctuations were analysed. The scyphomedusae blooms coincided with high positive SST anomalies, noted in the last seven years for this area. To better understand the mechanisms underlying changes in their phenology and abundance, detailed studies on benthic stages in the Bay are essential.


Ocean Science ◽  
2010 ◽  
Vol 6 (2) ◽  
pp. 491-501 ◽  
Author(s):  
G. I. Shapiro ◽  
D. L. Aleynik ◽  
L. D. Mee

Abstract. There is growing understanding that recent deterioration of the Black Sea ecosystem was partly due to changes in the marine physical environment. This study uses high resolution 0.25° climatology to analyze sea surface temperature variability over the 20th century in two contrasting regions of the sea. Results show that the deep Black Sea was cooling during the first three quarters of the century and was warming in the last 15–20 years; on aggregate there was a statistically significant cooling trend. The SST variability over the Western shelf was more volatile and it does not show statistically significant trends. The cooling of the deep Black Sea is at variance with the general trend in the North Atlantic and may be related to the decrease of westerly winds over the Black Sea, and a greater influence of the Siberian anticyclone. The timing of the changeover from cooling to warming coincides with the regime shift in the Black Sea ecosystem.


2013 ◽  
Vol 46 (1) ◽  
pp. 128-134 ◽  
Author(s):  
Sungjin Kwak ◽  
◽  
Bal DevBhattrai ◽  
Changkeun Lee ◽  
Woomyung Heo

Author(s):  
S. H. Coombs ◽  
C. E. Mitchell

The distribution, abundance and seasonal occurrence of larvae of mackerel (Scomber scombrus L.) are described from routine Continuous Plankton Recorder (CPR) sampling around the British Isles over the period 1948–78, and from more intensive CPR sampling in the Celtic Sea in 1977. There were two main areas of larval concentration: in the North Sea and over and adjacent to the Celtic Plateau; subsidiary aggregations were observed to the northwest of Ireland and to the west of Norway. There were some similarities between the distribution of larvae around the British Isles and that of adult Calanus spp. In the North Sea there was a southerly shift of larval distribution over the period 1948–77; over a similar period the abundance of larvae increased to reach high numbers by the late 1950s and subsequently declined after the mid-6os. To the south-west of the British Isles numbers of larvae showed a long-term decline. The long-term trends of distribution and abundance are discussed in relation to concurrent biological and environmental change. The clearest relationship was found between the numbers of mackerel larvae in the North Sea and sea-surface temperature in the North Atlantic, which suggests a common causative agent for both sets of observations; also, there was a weak relationship with both spawning stock biomass and sea-surface temperature at the spawning areas. In the North Sea the seasonal occurrence of larvae was from May to August, the majority being taken in June and July; over the period 1948–77 the seasonal time of occurrence of highest numbers of larvae has remained relatively constant. In the Celtic Sea the seasonal occurrence of larvae was spread over a longer period, from March to August, with relatively high numbers from March to June; over the period 1950–78 the time of occurrence has been variable, possibly with a tendency towards later timing in more recent years.


2010 ◽  
Vol 7 (1) ◽  
pp. 91-119
Author(s):  
G. I. Shapiro ◽  
D. L. Aleynik ◽  
L. D. Mee

Abstract. There is growing understanding that recent deterioration of the Black Sea ecosystem was partly due to changes in the marine physical environment. This study uses high resolution 0.25° climatology to analyze sea surface temperature variability over the 20th century in two contrasting regions of the sea. Results show that the deep Black Sea was cooling during the first three quarters of the century and was warming in the last 15–20 years; on aggregate there was a statistically significant cooling trend. The SST variability over the Western shelf was more volatile and it does not show statistically significant trends. The cooling of the deep Black Sea is at variance with the general trend in the North Atlantic and may be related to the decrease of westerly winds over the Black Sea, and a greater influence of the Siberian anticyclone. The timing of the changeover from cooling to warming coincides with the regime shift in the Black Sea ecosystem.


2020 ◽  
Vol 12 (22) ◽  
pp. 3742
Author(s):  
Eun-Young Lee ◽  
Kyung-Ae Park

Validation of daily Optimum Interpolation Sea Surface Temperature (OISST) data from 1982 to 2018 was performed by comparison with quality-controlled in situ water temperature data from Korea Meteorological Administration moored buoys and Korea Oceanographic Data Center observations in the coastal regions around the Korean Peninsula. In contrast to the relatively high accuracy of the SSTs in the open ocean, the SSTs of the coastal regions exhibited large root-mean-square errors (RMSE) ranging from 0.75 K to 1.99 K and a bias ranging from −0.51 K to 1.27 K, which tended to be amplified towards the coastal lines. The coastal SSTs in the Yellow Sea presented much higher RMSE and bias due to the appearance of cold water on the surface induced by vigorous tidal mixing over shallow bathymetry. The long-term trends of OISSTs were also compared with those of in situ water temperatures over decades. Although the trends of OISSTs deviated from those of in situ temperatures in coastal regions, the spatial patterns of the OISST trends revealed a similar structure to those of in situ temperature trends. The trends of SSTs using satellite data explained about 99% of the trends in in situ temperatures in offshore regions (>25 km from the shoreline). This study discusses the limitations and potential of global SSTs as well as long-term SST trends, especially in Korean coastal regions, considering diverse applications of satellite SSTs and increasing vulnerability to climate change.


2008 ◽  
Vol 9 (4) ◽  
pp. 816-824 ◽  
Author(s):  
Gregory J. McCabe ◽  
David M. Wolock

Abstract Global land surface runoff and sea surface temperatures (SST) are analyzed to identify the primary modes of variability of these hydroclimatic data for the period 1905–2002. A monthly water-balance model first is used with global monthly temperature and precipitation data to compute time series of annual gridded runoff for the analysis period. The annual runoff time series data are combined with gridded annual sea surface temperature data, and the combined dataset is subjected to a principal components analysis (PCA) to identify the primary modes of variability. The first three components from the PCA explain 29% of the total variability in the combined runoff/SST dataset. The first component explains 15% of the total variance and primarily represents long-term trends in the data. The long-term trends in SSTs are evident as warming in all of the oceans. The associated long-term trends in runoff suggest increasing flows for parts of North America, South America, Eurasia, and Australia; decreasing runoff is most notable in western Africa. The second principal component explains 9% of the total variance and reflects variability of the El Niño–Southern Oscillation (ENSO) and its associated influence on global annual runoff patterns. The third component explains 5% of the total variance and indicates a response of global annual runoff to variability in North Atlantic SSTs. The association between runoff and North Atlantic SSTs may explain an apparent steplike change in runoff that occurred around 1970 for a number of continental regions.


Sign in / Sign up

Export Citation Format

Share Document