Intercomparison of Two Box Models of the Chemical Evolution in Biomass-Burning Smoke Plumes

2006 ◽  
Vol 55 (3) ◽  
pp. 273-297 ◽  
Author(s):  
Sherri A. Mason ◽  
Jörg Trentmann ◽  
Tanja Winterrath ◽  
Robert J. Yokelson ◽  
Theodore J. Christian ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
pp. 357-392
Author(s):  
Igor B. Konovalov ◽  
Nikolai A. Golovushkin ◽  
Matthias Beekmann ◽  
Meinrat O. Andreae

Abstract. Long-range transport of biomass burning (BB) aerosol from regions affected by wildfires is known to have a significant impact on the radiative balance and air quality in receptor regions. However, the changes that occur in the optical properties of BB aerosol during long-range transport events are insufficiently understood, limiting the adequacy of representations of the aerosol processes in chemistry transport and climate models. Here we introduce a framework to infer and interpret changes in the optical properties of BB aerosol from satellite observations of multiple BB plumes. Our framework includes (1) a procedure for analysis of available satellite retrievals of the absorption and extinction aerosol optical depths (AAOD and AOD) and single-scattering albedo (SSA) as a function of the BB aerosol photochemical age and (2) a representation of the AAOD and AOD evolution with a chemistry transport model (CTM) involving a simplified volatility basis set (VBS) scheme with a few adjustable parameters. We apply this framework to analyze a large-scale outflow of BB smoke plumes from Siberia toward Europe that occurred in July 2016. We use AAOD and SSA data derived from OMI (Ozone Monitoring Instrument) satellite measurements in the near-UV range along with 550 nm AOD and carbon monoxide (CO) columns retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer) and IASI (Infrared Atmospheric Sounding Interferometer) satellite observations, respectively, to infer changes in the optical properties of Siberian BB aerosol due to its atmospheric aging and to get insights into the processes underlying these changes. Using the satellite data in combination with simulated data from the CHIMERE CTM, we evaluate the enhancement ratios (EnRs) that allow isolating AAOD and AOD changes due to oxidation and gas–particle partitioning processes from those due to other processes, including transport, deposition, and wet scavenging. The behavior of EnRs for AAOD and AOD is then characterized using nonlinear trend analysis. It is found that the EnR for AOD strongly increases (by about a factor of 2) during the first 20–30 h of the analyzed evolution period, whereas the EnR for AAOD does not exhibit a statistically significant increase during this period. The increase in AOD is accompanied by a statistically significant enhancement of SSA. Further BB aerosol aging (up to several days) is associated with a strong decrease in EnRs for both AAOD and AOD. Our VBS simulations constrained by the observations are found to be more consistent with satellite observations of strongly aged BB plumes than “tracer” simulations in which atmospheric transformations of BB organic aerosol were disregarded. The simulation results indicate that the upward trends in EnR for AOD and in SSA are mainly due to atmospheric processing of secondary organic aerosol (SOA), leading to an increase in the mass scattering efficiency of BB aerosol. Evaporation and chemical fragmentation of the SOA species, part of which is assumed to be absorptive (to contain brown carbon), are identified as likely reasons for the subsequent decrease in the EnR for both AAOD and AOD. Hence, our analysis reveals that the long-range transport of smoke plumes from Siberian fires is associated with major changes in BB aerosol optical properties and chemical composition. Overall, this study demonstrates the feasibility of using available satellite observations for evaluating and improving representations in atmospheric models of the BB aerosol aging processes in different regions of the world at much larger temporal scales than those typically addressed in aerosol chamber experiments.


2018 ◽  
Vol 18 (17) ◽  
pp. 12715-12734 ◽  
Author(s):  
Fernando Santos ◽  
Karla Longo ◽  
Alex Guenther ◽  
Saewung Kim ◽  
Dasa Gu ◽  
...  

Abstract. We present a characterization of the chemical composition of the atmosphere of the Brazilian Amazon rainforest based on trace gas measurements carried out during the South AMerican Biomass Burning Analysis (SAMBBA) airborne experiment in September 2012. We analyzed the observations of primary biomass burning emission tracers, i.e., carbon monoxide (CO), nitrogen oxides (NOx), ozone (O3), isoprene, and its main oxidation products, methyl vinyl ketone (MVK), methacrolein (MACR), and isoprene hydroxy hydroperoxide (ISOPOOH). The focus of SAMBBA was primarily on biomass burning emissions, but there were also several flights in areas of the Amazon forest not directly affected by biomass burning, revealing a background with a signature of biomass burning in the chemical composition due to long-range transport of biomass burning tracers from both Africa and the eastern part of Amazonia. We used the [MVK + MACR + ISOPOOH] ∕ [isoprene] ratio and the hydroxyl radical (OH) indirect calculation to assess the oxidative capacity of the Amazon forest atmosphere. We compared the background regions (CO < 150 ppbv), fresh and aged smoke plumes classified according to their photochemical age ([O3] ∕ [CO]), to evaluate the impact of biomass burning emissions on the oxidative capacity of the Amazon forest atmosphere. We observed that biomass burning emissions disturb the isoprene oxidation reactions, especially for fresh plumes ([MVK + MACR + ISOPOOH] ∕ [isoprene] =  7) downwind. The oxidation of isoprene is higher in fresh smoke plumes at lower altitudes (∼ 500 m) than in aged smoke plumes, anticipating near the surface a complex chain of oxidation reactions which may be related to secondary organic aerosol (SOA) formation. We proposed a refinement of the OH calculation based on the sequential reaction model, which considers vertical and horizontal transport for both biomass burning regimes and background environment. Our approach for the [OH] estimation resulted in values on the same order of magnitude of a recent observation in the Amazon rainforest [OH] ≅ 106 (molecules cm−3). During the fresh plume regime, the vertical profile of [OH] and the [MVK + MACR + ISOPOOH] ∕ [isoprene] ratio showed evidence of an increase in the oxidizing power in the transition from planetary boundary layer to cloud layer (1000–1500 m). These high values of [OH] (1.5 × 106 molecules cm−3) and [MVK + MACR + ISOPOOH] ∕ [isoprene] (7.5) indicate a significant change above and inside the cloud decks due to cloud edge effects on photolysis rates, which have a major impact on OH production rates.


2019 ◽  
Vol 19 (3) ◽  
pp. 1685-1702 ◽  
Author(s):  
Laura Gonzalez-Alonso ◽  
Maria Val Martin ◽  
Ralph A. Kahn

Abstract. We characterise the vertical distribution of biomass-burning emissions across the Amazon during the biomass-burning season (July–November) with an extensive climatology of smoke plumes derived from MISR and MODIS (2005–2012) and CALIOP (2006–2012) observations. Smoke plume heights exhibit substantial variability, spanning a few hundred metres up to 6 km above the terrain. However, the majority of the smoke is located at altitudes below 2.5 km. About 60 % of smoke plumes are observed in drought years, 40 %–50 % at the peak month of the burning season (September) and 94 % over tropical forest and savanna regions, with respect to the total number of smoke plume observations. At the time of the MISR observations (10:00–11:00 LT), the highest plumes are detected over grassland fires (with an averaged maximum plume height of ∼1100 m) and the lowest plumes occur over tropical forest fires (∼800 m). A similar pattern is found later in the day (14:00–15:00 LT) with CALIOP, although at higher altitudes (2300 m grassland vs. 2000 m tropical forest), as CALIOP typically detects smoke at higher altitudes due to its later overpass time, associated with a deeper planetary boundary layer, possibly more energetic fires, and greater sensitivity to thin aerosol layers. On average, 3 %–20 % of the fires inject smoke into the free troposphere; this percentage tends to increase toward the end of the burning season (November: 15 %–40 %). We find a well-defined seasonal cycle between MISR plume heights, MODIS fire radiative power and atmospheric stability across the main biomes of the Amazon, with higher smoke plumes, more intense fires and reduced atmospheric stability conditions toward the end of the burning season. Lower smoke plume heights are detected during drought (800 m) compared to non-drought (1100 m) conditions, in particular over tropical forest and savanna fires. Drought conditions favour understory fires over tropical forest, which tend to produce smouldering combustion and low smoke injection heights. Droughts also seem to favour deeper boundary layers and the percentage of smoke plumes that reach the free troposphere is lower during these dry conditions. Consistent with previous studies, the MISR mid-visible aerosol optical depth demonstrates that smoke makes a significant contribution to the total aerosol loading over the Amazon, which in combination with lower injection heights in drought periods has important implications for air quality. This work highlights the importance of biome type, fire properties and atmospheric and drought conditions for plume dynamics and smoke loading. In addition, our study demonstrates the value of combining observations of MISR and CALIOP constraints on the vertical distribution of smoke from biomass burning over the Amazon.


2015 ◽  
Vol 112 ◽  
pp. 294-305 ◽  
Author(s):  
Ming-Tung Chuang ◽  
Joshua S. Fu ◽  
Neng-Huei Lin ◽  
Chung-Te Lee ◽  
Yang Gao ◽  
...  

2013 ◽  
Vol 13 (12) ◽  
pp. 32269-32289
Author(s):  
T. Logan ◽  
B. Xi ◽  
X. Dong

Abstract. Biomass burning aerosols can have a large impact on atmospheric processes as well as human health. During the 2012 warm season, a large outbreak of wildfires originating from the intermountain and Pacific states provided many opportunities to observe the physical and chemical properties of biomass smoke aerosols. Six biomass burning smoke plumes (26 June–15 September) have been observed by the newly installed Grand Forks, North Dakota, AERONET site (47.91° N, 97.32° W) and are selected for this study. To identify the source regions, HYSPLIT backward trajectory model data and satellite imagery are used to track these events. The volume size distribution and spectral aerosol optical depth (AOD) dependence showed the relative influences of fine and coarse mode particles. Case II (4 July) had the strongest fine mode influence as evidenced by a strong spectral AOD dependence while Case VI (15 September) had the strongest coarse mode influence with the weakest spectral dependence. The spectral dependences of absorption aerosol optical depth (AAOD) and single scattering co-albedo (ωoabs) illustrated the varying absorption of the smoke plumes by inferring the relative contributions of strongly and weakly absorbing carbonaceous species. More specifically, the AAOD parameter is primarily influenced by aerosol particle size while ωoabs is more dependent on aerosol composition. The AAOD spectral dependences for Cases I (26 June), III (31 July), and VI were weaker than those from Cases II, IV (28 August), and V (30 August). However, the spectral ωoabs dependences were different in that the smoke particles in Cases III and VI had the strongest absorption while Cases I, II, IV, and V had moderate to weakly absorbing particles. In addition, a weak correlation was found between plume transport time and particle absorption where strongly absorbing carbon was converted to weakly absorbing carbon.


2013 ◽  
Vol 13 (12) ◽  
pp. 33089-33104 ◽  
Author(s):  
A. Tóth ◽  
A. Hoffer ◽  
I. Nyirő-Kósa ◽  
M. Pósfai ◽  
A. Gelencsér

Abstract. Atmospheric tar balls are particles of special morphology and composition that are abundant in the plumes of biomass smoke. These particles form a specific subset of brown carbon (BrC) which has been shown to play a significant role in atmospheric shortwave absorption and thus climate forcing. Formerly tar balls were hypothesized to be formed in secondary processes in the atmosphere from lignin pyrolysis products. Based on their typical size distributions, morphology, chemical characteristics and other features we now suggest that tar balls are initially produced by the emission of primary tar droplets upon biomass burning. To verify our hypothesis tar balls were produced under laboratory conditions with the total exclusion of flame processes. An all-glass apparatus was designed and tar ball particles were generated from liquid tar obtained previously by dry distillation of wood. The size range, morphology and the chemical composition of the laboratory-generated tar ball particles were similar to those observed in biomass smoke plumes or elsewhere in the atmosphere. Based on our results and the chemical and physical characteristics of tar we suggest that tar balls can be formed by the chemical transformation of emitted primary tar droplets.


2018 ◽  
Vol 18 (7) ◽  
pp. 4617-4638 ◽  
Author(s):  
Xinghua Zhang ◽  
Jianzhong Xu ◽  
Shichang Kang ◽  
Yanmei Liu ◽  
Qi Zhang

Abstract. An intensive field measurement was conducted at a remote, background, high-altitude site (Qomolangma Station, QOMS, 4276 m a.s.l.) in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) along with other collocated instruments. The field measurement was performed from 12 April to 12 May 2016 to chemically characterize the high time-resolved submicron particulate matter (PM1) and obtain the dynamic processes (emissions, transport, and chemical evolution) of biomass burning (BB), frequently transported from South Asia to the Himalayas during pre-monsoon season. Overall, the average (±1σ) PM1 mass concentration was 4.44 (±4.54) µg m−3 for the entire study, which is comparable with those observed at other remote sites worldwide. Organic aerosol (OA) was the dominant PM1 species (accounting for 54.3 % of total PM1 on average) followed by black carbon (BC) (25.0 %), sulfate (9.3 %), ammonium (5.8 %), nitrate (5.1 %), and chloride (0.4 %). The average size distributions of PM1 species all peaked at an overlapping accumulation mode (∼ 500 nm), suggesting that aerosol particles were internally well-mixed and aged during long-range transport. Positive matrix factorization (PMF) analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a BB-related OA (BBOA, 43.7 %), a nitrogen-containing OA (NOA, 13.9 %) and a more-oxidized oxygenated OA (MO-OOA, 42.4 %). Two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions from the west and southwest of QOMS during the study were observed. A typical BB plume was investigated in detail to illustrate the chemical evolution of aerosol characteristics under distinct air mass origins, meteorological conditions, and atmospheric oxidation processes.


Sign in / Sign up

Export Citation Format

Share Document