scholarly journals Chemical characterization of long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometry

2018 ◽  
Vol 18 (7) ◽  
pp. 4617-4638 ◽  
Author(s):  
Xinghua Zhang ◽  
Jianzhong Xu ◽  
Shichang Kang ◽  
Yanmei Liu ◽  
Qi Zhang

Abstract. An intensive field measurement was conducted at a remote, background, high-altitude site (Qomolangma Station, QOMS, 4276 m a.s.l.) in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) along with other collocated instruments. The field measurement was performed from 12 April to 12 May 2016 to chemically characterize the high time-resolved submicron particulate matter (PM1) and obtain the dynamic processes (emissions, transport, and chemical evolution) of biomass burning (BB), frequently transported from South Asia to the Himalayas during pre-monsoon season. Overall, the average (±1σ) PM1 mass concentration was 4.44 (±4.54) µg m−3 for the entire study, which is comparable with those observed at other remote sites worldwide. Organic aerosol (OA) was the dominant PM1 species (accounting for 54.3 % of total PM1 on average) followed by black carbon (BC) (25.0 %), sulfate (9.3 %), ammonium (5.8 %), nitrate (5.1 %), and chloride (0.4 %). The average size distributions of PM1 species all peaked at an overlapping accumulation mode (∼ 500 nm), suggesting that aerosol particles were internally well-mixed and aged during long-range transport. Positive matrix factorization (PMF) analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a BB-related OA (BBOA, 43.7 %), a nitrogen-containing OA (NOA, 13.9 %) and a more-oxidized oxygenated OA (MO-OOA, 42.4 %). Two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions from the west and southwest of QOMS during the study were observed. A typical BB plume was investigated in detail to illustrate the chemical evolution of aerosol characteristics under distinct air mass origins, meteorological conditions, and atmospheric oxidation processes.

2019 ◽  
Author(s):  
Xinghua Zhang ◽  
Jianzhong Xu ◽  
Shichang Kang ◽  
Qi Zhang

Abstract. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed along with other online instruments to study the highly time-resolved chemistry and sources of submicron aerosols (PM1) at Waliguan (WLG) Baseline Observatory, a high-altitude (3816 m a.s.l.) background station located at the northeastern edge of Qinghai-Tibet Plateau (QTP), during 1–31 July 2017. The average PM1 mass concentration during this study was 9.1 μg m−3 (ranging from 0.3 to 28.1 μg m−3), which was distinct higher than those (2.0–5.7 μg m−3) measured with Aerodyne AMS at other high-elevation sites in the southern or central QTP. Sulfate showed dominant contribution (38.1 %) to PM1 at WLG following by organics (34.5 %), ammonium (15.2 %), nitrate (8.1 %), BC (3.0 %) and chloride (1.1 %). Accordingly, bulk aerosols appeared to be slightly acidic throughout this study mainly related to the enhanced sulfate contribution. All chemical species peaked at the accumulation mode, indicating the well mixed and highly aged aerosol particles at WLG from long-range transport. Positive matrix factorization (PMF) on the high-resolution organic mass spectra resolved four distinct organic aerosol (OA) components, including a traffic-related hydrocarbon-like OA (HOA), a relatively fresh biomass burning OA (BBOA), an aged biomass burning OA (agBBOA) and a more-oxidized oxygenated OA (OOA). On average, the two relatively oxidized OAs, OOA and agBBOA, contributed 34.4 % and 40.4 % of organics, respectively, while the rest were 18.4 % for BBOA and 6.8 % for HOA. Source analysis for air masses displayed higher mass concentrations of PM1 and enhanced contributions of sulfate and biomass burning related OA components (agBBOA + BBOA) were from northeast of the WLG with shorter transport distance, whereas lower PM1 mass concentrations with enhanced OOA contribution were from west after long-range transport, suggesting their distinct aerosol sources and significant impacts of regional transport to aerosol mass loadings and chemistry at WLG.


2019 ◽  
Vol 19 (11) ◽  
pp. 7897-7911 ◽  
Author(s):  
Xinghua Zhang ◽  
Jianzhong Xu ◽  
Shichang Kang ◽  
Qi Zhang ◽  
Junying Sun

Abstract. An Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed along with other online instruments to study the highly time resolved chemistry and sources of submicron aerosols (PM1) at Waliguan (WLG) Baseline Observatory, a high-altitude (3816 m a.s.l.) background station located at the northeast edge of the Qinghai–Tibet Plateau (QTP), during 1–31 July 2017. The average PM1 mass concentration during this study was 9.1 µg m−3 (ranging from 0.3 to 28.1 µg m−3), which was distinctly higher than those (2.0–5.7 µg m−3) measured with the Aerodyne AMS at other high-elevation sites in the southern or central QTP. Sulfate showed a dominant contribution (38.1 %) to PM1 at WLG followed by organics (34.5 %), ammonium (15.2 %), nitrate (8.1 %), BC (3.0 %) and chloride (1.1 %). Accordingly, bulk aerosols appeared to be slightly acidic throughout this study, mainly related to the enhanced sulfate contribution. All chemical species peaked at the accumulation mode, indicating the well-mixed and highly aged aerosol particles at WLG from long-range transport. Positive matrix factorization (PMF) on the high-resolution organic mass spectra resolved four distinct organic aerosol (OA) components, including a traffic-related hydrocarbon-like OA (HOA), a relatively fresh biomass burning OA (BBOA), an aged biomass burning OA (agBBOA) and a more-oxidized oxygenated OA (OOA). On average, the two relatively oxidized OAs, OOA and agBBOA, contributed 34.4 % and 40.4 % of organics, respectively, while the rest were 18.4 % for BBOA and 6.8 % for HOA. Source analysis for air masses showed that higher mass concentrations of PM1 and enhanced contributions of sulfate and biomass-burning-related OA components (agBBOA + BBOA) were from the northeast of the WLG with shorter transport distance, whereas lower PM1 mass concentrations with enhanced OOA contribution were from the west after long-range transport, suggesting their distinct aerosol sources and significant impacts of regional transport on aerosol mass loadings and chemistry at WLG.


2017 ◽  
Author(s):  
Xinghua Zhang ◽  
Jianzhong Xu ◽  
Shichang Kang ◽  
Yanmei Liu ◽  
Qi Zhang

Abstract. An intensive measurement was conducted at a remote, background, and high-altitude site (Qomolangma station, QOMS, 4276 m a.s.l.) in the northern Himalayas, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) along with other collocated instruments. The field measurement was performed from April 12 to May 12, 2016 to chemically characterize the high time-resolved submicron particulate matter (PM1) and obtain the dynamic processes (emissions, transport, and chemical processing) of biomass burning (BB), frequently transported from South Asia to the Himalayas during pre-monsoon season. Overall, the average (±1σ) PM1 mass concentration was 4.44 (±4.54) µg m−3 for the entire study, comparable with those observed at other remote sites worldwide. Organic aerosol (OA) was the dominant PM1 species (accounting for 54.3 % of total PM1 on average) followed by black carbon (BC) (25.0 %), sulfate (9.3 %), ammonium (5.8 %), nitrate (5.1 %), and chloride (0.4 %). The average size distributions of PM1 species all peaked at an overlapping accumulation mode (~ 500 nm), suggesting that aerosol particles were internally well-mixed and aged during long-range transportation. Positive matrix factorization (PMF) analysis on the high-resolution organic mass spectra identified three distinct OA factors, including a BB-related OA (BBOA, 43.7 %), a nitrogen-containing OA (NOA, 13.9 %) and a more-oxidized oxygenated OA (MO-OOA, 42.4 %). Two polluted episodes with enhanced PM1 mass loadings and elevated BBOA contributions from the west and southwest of QOMS during the study were observed. A typical BB plume was investigated in detail to illustrate the chemical evolution of aerosol, air mass origins, meteorological conditions and atmospheric oxidation processes.


2019 ◽  
Vol 244 ◽  
pp. 414-422 ◽  
Author(s):  
Katsushige Uranishi ◽  
Fumikazu Ikemori ◽  
Hikari Shimadera ◽  
Akira Kondo ◽  
Seiji Sugata

Author(s):  
Hervé Petetin ◽  
Bastien Sauvage ◽  
Mark Parrington ◽  
Hannah Clark ◽  
Alain Fontaine ◽  
...  

<p><strong>Abstract.</strong> This study investigates the role of biomass burning and long-range transport in the anomalies of carbon monoxide (CO) regularly observed along the tropospheric vertical profiles measured in the framework of IAGOS. Considering the high interannual variability of biomass burning emissions and the episodic nature of pollution long-range transport, one strength of this study is the amount of data taken into account, namely 30,000 vertical profiles at 9 clusters of airports in Europe, North America, Asia, India and southern Africa over the period 2002&amp;ndash;2017. </p> <p> As a preliminary, a brief overview of the spatio-temporal variability, latitudinal distribution, interannual variability and trends of biomass burning CO emissions from 14 regions is provided. The distribution of CO mixing ratios at different levels of the troposphere is also provided based on the entire IAGOS database (125 million CO observations). </p> <p> This study focuses on the free troposphere (altitudes above 2<span class="thinspace"></span>km) where the long-range transport of pollution is favoured. Anomalies at a given airport cluster are here defined as departures from the local seasonally-averaged climatological vertical profile. The intensity of these anomalies varies significantly depending on the airport, with maximum (minimum) CO anomalies of 110&amp;ndash;150 (48)<span class="thinspace"></span>ppbv in Asia (Europe). Looking at the seasonal variation of the frequency of occurrence, the 25<span class="thinspace"></span>% strongest CO anomalies appears reasonably well distributed along the year, in contrast to the 5<span class="thinspace"></span>% or 1<span class="thinspace"></span>% strongest anomalies that exhibit a strong seasonality with for instance more frequent anomalies during summertime in northern United-States, during winter/spring in Japan, during spring in South-east China, during the non-monsoon seasons in south-east Asia and south India, and during summer/fall at Windhoek, Namibia. Depending on the location, these strong anomalies are observed in different parts of the free troposphere. </p> <p> In order to investigate the role of biomass burning emissions in these anomalies, we used the SOFT-IO v1.0 IAGOS added-value products that consist of FLEXPART 20-days backward simulations along all IAGOS aircraft trajectories, coupled with anthropogenic (MACCity) and biomass burning (GFAS) CO emission inventories and vertical injections. SOFT-IO estimates the contribution (in ppbv) of the recent (less than 20 days) primary worldwide CO emissions, tagged per source region. Biomass burning emissions are found to play an important role in the strongest CO anomalies observed at most airport clusters. The regional tags indicate a large contribution from boreal regions at airport clusters in Europe and North America during summer season. In both Japan and south India, the anthropogenic emissions dominate all along the year, except for the strongest summertime anomalies observed in Japan that are due to Siberian fires. The strongest CO anomalies at airport clusters located in south-east Asia are induced by fires burning during spring in south-east Asia and during fall in equatorial Asia. In southern Africa, the Windhoek airport was mainly impacted by fires in southern hemisphere Africa and South America. </p> <p> To our knowledge, no other studies have used such a large dataset of in situ vertical profiles for deriving a climatology of the impact of biomass burning versus anthropogenic emissions on the strongest CO anomalies observed in the troposphere, in combination with information on the source regions. This study therefore provides both qualitative and quantitative information for interpreting the highly variable CO vertical distribution in several regions of interest.</p>


2021 ◽  
Vol 21 (1) ◽  
pp. 357-392
Author(s):  
Igor B. Konovalov ◽  
Nikolai A. Golovushkin ◽  
Matthias Beekmann ◽  
Meinrat O. Andreae

Abstract. Long-range transport of biomass burning (BB) aerosol from regions affected by wildfires is known to have a significant impact on the radiative balance and air quality in receptor regions. However, the changes that occur in the optical properties of BB aerosol during long-range transport events are insufficiently understood, limiting the adequacy of representations of the aerosol processes in chemistry transport and climate models. Here we introduce a framework to infer and interpret changes in the optical properties of BB aerosol from satellite observations of multiple BB plumes. Our framework includes (1) a procedure for analysis of available satellite retrievals of the absorption and extinction aerosol optical depths (AAOD and AOD) and single-scattering albedo (SSA) as a function of the BB aerosol photochemical age and (2) a representation of the AAOD and AOD evolution with a chemistry transport model (CTM) involving a simplified volatility basis set (VBS) scheme with a few adjustable parameters. We apply this framework to analyze a large-scale outflow of BB smoke plumes from Siberia toward Europe that occurred in July 2016. We use AAOD and SSA data derived from OMI (Ozone Monitoring Instrument) satellite measurements in the near-UV range along with 550 nm AOD and carbon monoxide (CO) columns retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer) and IASI (Infrared Atmospheric Sounding Interferometer) satellite observations, respectively, to infer changes in the optical properties of Siberian BB aerosol due to its atmospheric aging and to get insights into the processes underlying these changes. Using the satellite data in combination with simulated data from the CHIMERE CTM, we evaluate the enhancement ratios (EnRs) that allow isolating AAOD and AOD changes due to oxidation and gas–particle partitioning processes from those due to other processes, including transport, deposition, and wet scavenging. The behavior of EnRs for AAOD and AOD is then characterized using nonlinear trend analysis. It is found that the EnR for AOD strongly increases (by about a factor of 2) during the first 20–30 h of the analyzed evolution period, whereas the EnR for AAOD does not exhibit a statistically significant increase during this period. The increase in AOD is accompanied by a statistically significant enhancement of SSA. Further BB aerosol aging (up to several days) is associated with a strong decrease in EnRs for both AAOD and AOD. Our VBS simulations constrained by the observations are found to be more consistent with satellite observations of strongly aged BB plumes than “tracer” simulations in which atmospheric transformations of BB organic aerosol were disregarded. The simulation results indicate that the upward trends in EnR for AOD and in SSA are mainly due to atmospheric processing of secondary organic aerosol (SOA), leading to an increase in the mass scattering efficiency of BB aerosol. Evaporation and chemical fragmentation of the SOA species, part of which is assumed to be absorptive (to contain brown carbon), are identified as likely reasons for the subsequent decrease in the EnR for both AAOD and AOD. Hence, our analysis reveals that the long-range transport of smoke plumes from Siberian fires is associated with major changes in BB aerosol optical properties and chemical composition. Overall, this study demonstrates the feasibility of using available satellite observations for evaluating and improving representations in atmospheric models of the BB aerosol aging processes in different regions of the world at much larger temporal scales than those typically addressed in aerosol chamber experiments.


2018 ◽  
Vol 18 (7) ◽  
pp. 1734-1745 ◽  
Author(s):  
Leila Droprinchinski Martins ◽  
Ricardo Hallak ◽  
Rafaela Cruz Alves ◽  
Daniela S. de Almeida ◽  
Rafaela Squizzato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document