Boundary graph classes for some maximum induced subgraph problems

2012 ◽  
Vol 27 (2) ◽  
pp. 345-354 ◽  
Author(s):  
Dmitriy S. Malyshev
1999 ◽  
Vol Vol. 3 no. 4 ◽  
Author(s):  
Andrzej Proskurowski ◽  
Jan Arne Telle

International audience We introduce q-proper interval graphs as interval graphs with interval models in which no interval is properly contained in more than q other intervals, and also provide a forbidden induced subgraph characterization of this class of graphs. We initiate a graph-theoretic study of subgraphs of q-proper interval graphs with maximum clique size k+1 and give an equivalent characterization of these graphs by restricted path-decomposition. By allowing the parameter q to vary from 0 to k, we obtain a nested hierarchy of graph families, from graphs of bandwidth at most k to graphs of pathwidth at most k. Allowing both parameters to vary, we have an infinite lattice of graph classes ordered by containment.


2021 ◽  
Vol 68 (6) ◽  
pp. 1-33
Author(s):  
Vida Dujmović ◽  
Louis Esperet ◽  
Cyril Gavoille ◽  
Gwenaël Joret ◽  
Piotr Micek ◽  
...  

We show that there exists an adjacency labelling scheme for planar graphs where each vertex of an n -vertex planar graph G is assigned a (1 + o(1)) log 2 n -bit label and the labels of two vertices u and v are sufficient to determine if uv is an edge of G . This is optimal up to the lower order term and is the first such asymptotically optimal result. An alternative, but equivalent, interpretation of this result is that, for every positive integer n , there exists a graph U n with n 1+o(1) vertices such that every n -vertex planar graph is an induced subgraph of U n . These results generalize to a number of other graph classes, including bounded genus graphs, apex-minor-free graphs, bounded-degree graphs from minor closed families, and k -planar graphs.


10.37236/9473 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Andrzej Grzesik ◽  
Tereza Klimošová ◽  
Marcin Pilipczuk ◽  
Michał Pilipczuk

 A graph is called $P_t$-free if it does not contain a $t$-vertex path as an induced subgraph. While $P_4$-free graphs are exactly cographs, the structure of $P_t$-free graphs for $t \geqslant 5$ remains little understood. On one hand, classic computational problems such as Maximum Weight Independent Set (MWIS) and $3$-Coloring are not known to be NP-hard on $P_t$-free graphs for any fixed $t$. On the other hand, despite significant effort, polynomial-time algorithms for MWIS in $P_6$-free graphs~[SODA 2019] and $3$-Coloring in $P_7$-free graphs~[Combinatorica 2018] have been found only recently. In both cases, the algorithms rely on deep structural insights into the considered graph classes. One of the main tools in the algorithms for MWIS in $P_5$-free graphs~[SODA 2014] and in $P_6$-free graphs~[SODA 2019] is the so-called Separator Covering Lemma that asserts that every minimal separator in the graph can be covered by the union of neighborhoods of a constant number of vertices. In this note we show that such a statement generalizes to $P_7$-free graphs and is false in $P_8$-free graphs. We also discuss analogues of such a statement for covering potential maximal cliques with unions of neighborhoods.


2014 ◽  
Vol Vol. 16 no. 1 (Graph Theory) ◽  
Author(s):  
Eglantine Camby ◽  
Jean Cardinal ◽  
Samuel Fiorini ◽  
Oliver Schaudt

Graph Theory International audience The vertex cover number of a graph is the minimum number of vertices that are needed to cover all edges. When those vertices are further required to induce a connected subgraph, the corresponding number is called the connected vertex cover number, and is always greater or equal to the vertex cover number. Connected vertex covers are found in many applications, and the relationship between those two graph invariants is therefore a natural question to investigate. For that purpose, we introduce the \em Price of Connectivity, defined as the ratio between the two vertex cover numbers. We prove that the price of connectivity is at most 2 for arbitrary graphs. We further consider graph classes in which the price of connectivity of every induced subgraph is bounded by some real number t. We obtain forbidden induced subgraph characterizations for every real value t ≤q 3/2. We also investigate critical graphs for this property, namely, graphs whose price of connectivity is strictly greater than that of any proper induced subgraph. Those are the only graphs that can appear in a forbidden subgraph characterization for the hereditary property of having a price of connectivity at most t. In particular, we completely characterize the critical graphs that are also chordal. Finally, we also consider the question of computing the price of connectivity of a given graph. Unsurprisingly, the decision version of this question is NP-hard. In fact, we show that it is even complete for the class Θ₂^P = P^NP[\log], the class of decision problems that can be solved in polynomial time, provided we can make O(\log n) queries to an NP-oracle. This paves the way for a thorough investigation of the complexity of problems involving ratios of graph invariants.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 164
Author(s):  
Tobias Rupp ◽  
Stefan Funke

We prove a Ω(n) lower bound on the query time for contraction hierarchies (CH) as well as hub labels, two popular speed-up techniques for shortest path routing. Our construction is based on a graph family not too far from subgraphs that occur in real-world road networks, in particular, it is planar and has a bounded degree. Additionally, we borrow ideas from our lower bound proof to come up with instance-based lower bounds for concrete road network instances of moderate size, reaching up to 96% of an upper bound given by a constructed CH. For a variant of our instance-based schema applied to some special graph classes, we can even show matching upper and lower bounds.


2021 ◽  
Vol 37 (3) ◽  
pp. 839-866
Author(s):  
Wei Zheng ◽  
Hajo Broersma ◽  
Ligong Wang

AbstractMotivated by several conjectures due to Nikoghosyan, in a recent article due to Li et al., the aim was to characterize all possible graphs H such that every 1-tough H-free graph is hamiltonian. The almost complete answer was given there by the conclusion that every proper induced subgraph H of $$K_1\cup P_4$$ K 1 ∪ P 4 can act as a forbidden subgraph to ensure that every 1-tough H-free graph is hamiltonian, and that there is no other forbidden subgraph with this property, except possibly for the graph $$K_1\cup P_4$$ K 1 ∪ P 4 itself. The hamiltonicity of 1-tough $$K_1\cup P_4$$ K 1 ∪ P 4 -free graphs, as conjectured by Nikoghosyan, was left there as an open case. In this paper, we consider the stronger property of pancyclicity under the same condition. We find that the results are completely analogous to the hamiltonian case: every graph H such that any 1-tough H-free graph is hamiltonian also ensures that every 1-tough H-free graph is pancyclic, except for a few specific classes of graphs. Moreover, there is no other forbidden subgraph having this property. With respect to the open case for hamiltonicity of 1-tough $$K_1\cup P_4$$ K 1 ∪ P 4 -free graphs we give infinite families of graphs that are not pancyclic.


2021 ◽  
Vol 64 (5) ◽  
pp. 98-105
Author(s):  
Martin Grohe ◽  
Daniel Neuen

We investigate the interplay between the graph isomorphism problem, logical definability, and structural graph theory on a rich family of dense graph classes: graph classes of bounded rank width. We prove that the combinatorial Weisfeiler-Leman algorithm of dimension (3 k + 4) is a complete isomorphism test for the class of all graphs of rank width at most k. A consequence of our result is the first polynomial time canonization algorithm for graphs of bounded rank width. Our second main result addresses an open problem in descriptive complexity theory: we show that fixed-point logic with counting expresses precisely the polynomial time properties of graphs of bounded rank width.


Sign in / Sign up

Export Citation Format

Share Document