Enhanced Photocatalytic Performance of Zinc Ferrite Nanocomposites for Degrading Methylene Blue: Effect of Nickel Doping Concentration

Author(s):  
Jannat Hammouche ◽  
M. Gaidi ◽  
S. Columbus ◽  
M. Omari
2011 ◽  
Vol 194-196 ◽  
pp. 385-388
Author(s):  
Hong Juan Wang ◽  
Feng Qiang Sun ◽  
Ming Zhong Ren ◽  
Qing Wei Guo

Nanoporous SnO2with high photocatalytic activity has been successfully prepared by a photochemical method, using SnCl2aqueous solution as a precursor. The as-synthesized sample was characterized by XRD, N2 adsorption-desorption and UV-vis. The photocatalytic activity of the sample was evaluated by degrading methylene blue (MB) aqueous solution under the UV light source and was compared with that of the commercial titania (Degussa P25). The results showed that the produced SnO2can degrade MB solution quickly and has comparative photocatalytic performance with P25 for degrading MB. This facile method supplies an effective way to prepare SnO2photocatalyst.


2014 ◽  
Vol 608 ◽  
pp. 224-229 ◽  
Author(s):  
Potjanaporn Chaengchawi ◽  
Karn Serivalsatit ◽  
Pornapa Sujaridworakun

A visible-light responsive CdS/ZnO nanocomposite photocatalyst was successfully synthesized by precipitation of CdS nanoparticles, using Cd (NO3)2 and Na2S as starting materials, on ZnO nanoparticles and then calcined at 400°C for 2 hours. The effects of the mole ratio of CdS and ZnO in the composites on their phase, morphology, and surface area were investigated by X-ray Diffraction (XRD), scanning electron microscope (SEM), Brunauer Emmett Teller method (BET), respectively. The photocatalytic degradation of methylene blue solution in the presence of composite products under visible-light irradiation was investigated. The results showed that the mole ratio of CdS and ZnO played a significant role on photocatalytic performance. The highest photocatalytic activity was obtained from the CdS/ZnO nanocomposite with mole ratio of 1:4, which is higher than that of pure CdS and pure ZnO.


2021 ◽  
Author(s):  
Xianzhen Diao ◽  
Jin XU ◽  
Yufei WANG

Nanometer TiO2 photocatalysts were prepared by the sol–gel method. The catalysts were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, and other techniques. Methyl orange solution was used for the degradation of the organic material and ultrasonic technology was used to determine the photocatalytic performance of the catalysts. The results show that the photocatalytic performance of the Ni-N-TiO2 is clearly improved under ultrasonic conditions. The TiO2 photocatalytic degradation effect is optimal at a catalyst concentration of 0.3 g/L, an initial concentration of the organic matter of 0.03 mmol/L, a nickel-doping amount of 2 mol %, and a nitrogen-doping amount of 15 mol %. The use of ultrasound technology in combination with photocatalysis has a positive effect and results in a TiO2 degradation rate of methyl orange of 95 % after 3 h.


2014 ◽  
Vol 896 ◽  
pp. 541-544
Author(s):  
Is Fatimah ◽  
N. Nunani Yuyun

ZnO-SiO2/Laponite was prepared by sol-gel preparation procedure consit of SiO2 pillarization to laponite followed by ZnO dispersion by using zinc acetate as precursor. The obtained material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), diffuse reflectance UV-Visible (DRUV-Vis) and N2 adsorption-desorption analysis. The photocatalytic performance of the amterial in methylene blue decolorization was also investigated. Compared with ZnO-SiO2 nanoparticles, it is concluded that ZnO-SiO2/Laponite possess higher photocatalytic activity which obey Temkin isotherm model.


2018 ◽  
Vol 42 (13) ◽  
pp. 11109-11116 ◽  
Author(s):  
R. Salimi ◽  
A. A. Sabbagh Alvani ◽  
N. Naseri ◽  
S. F. Du ◽  
D. Poelman

A new plasmonic Ag hybridized CuWO4/WO3 heterostructured nanocomposite was successfully synthesized via a ligand-assisted sol gel method and the photocatalytic activity was evaluated by photo-degradation of methylene blue (MB) under visible light irradiation.


AIP Advances ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 125341 ◽  
Author(s):  
Yufei Xue ◽  
Dong Tian ◽  
Chunhua Zeng ◽  
Yunchang Fu ◽  
Kongzhai Li

RSC Advances ◽  
2017 ◽  
Vol 7 (41) ◽  
pp. 25314-25324 ◽  
Author(s):  
Lin Xiao ◽  
Li Youji ◽  
Chen Feitai ◽  
Xu Peng ◽  
Li Ming

A highly efficient and elaborately structured visible-light-driven catalyst composed of mesoporous TiO2 (MT) doped with Ag+-coated graphene (MT-Ag/GR) has been successfully fabricated by a sol–gel and solvothermal method.


2012 ◽  
Vol 550-553 ◽  
pp. 2819-2823
Author(s):  
Hang Xu ◽  
Min Yue Li

Nano-ZnO powders were prepared through gel-sol method with zinc acetate and lithium hydroxide as crude material. Nano-ZnO, as photo-catalyst, was used to decompose Methylene Blue at air lift circulating reactor and Photo-Layer model to describe photocatalytic kinetics. The results show that nano-ZnO has a integrate crystal and its size is 6.6nm with the best photocatalytic performance, when calcined at 350oC. The best ZnO dosage is 0.1g/L with 97% Methylene Blue removal after 30min. The photocatalytic process was the control step in chemical reaction. The •OH concentration inside the photo-layer in different reaction condition were calculated according to Photo-Layer model.


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 880 ◽  
Author(s):  
Feidias Bairamis ◽  
Ioannis Konstantinou ◽  
Dimitrios Petrakis ◽  
Tiverios Vaimakis

TiO2/g-C3N4 (GNT) fibers with 1%, 2.5% and 5% (wt%) ratios have been synthesized via one-step electrospinning using polyvinylpyrrolidone (PVP) polymer. Results showed mesoporous fibrous catalysts consisted of anatase (80.0–85.1%) and rutile phase (14.9–20.0%), with diameter between 200–300 nm and band gap lower than 3.0 eV confirming the absorption shift to visible-light region. The formation of •OH radicals and methylene blue dye degradation increases as the g-C3N4 doping percent also increases, following the trend ΤiO2 < GNT1% ≈ GNT2.5% < GNT5%. A z-scheme mechanism is attributed to the photocatalytic performance confirming the potential for green chemistry and environmental technology applications.


Sign in / Sign up

Export Citation Format

Share Document