Role of Mobile Charge Carriers and Fluctuation Induced Conductivity in (Cu0.5Tl0.5−x K x )Ba2Ca3Cu1Zn3O12−δ Superconductor

2011 ◽  
Vol 24 (6) ◽  
pp. 1939-1945 ◽  
Author(s):  
M. Mumtaz ◽  
Nawazish A. Khan ◽  
S. M. Hasnain ◽  
Adnan Younis
1993 ◽  
Vol 58 (7) ◽  
pp. 1591-1599 ◽  
Author(s):  
Abd El-Aziz A. Said

Molybdenum oxide catalyst doped or mixed with (1 - 50) mole % Fe3+ ions were prepared. The structure of the original samples and the samples calcined at 400 °C were characterized using DTA, X-ray diffraction and IR spectra. Measurements of the electrical conductivity of calcined samples with and without isopropyl alcohol revealed that the conductance increases on increasing the content of Fe3+ ions up to 50 mole %. The activation energies of charge carriers were determined in presence and absence of the alcohol. The catalytic dehydration of isopropyl alcohol was carried out at 250 °C using a flow system. The results obtained showed that the doped or mixed catalysts are active and selective towards propene formation. However, the catalyst containing 40 mole % Fe3+ ions exhibited the highest activity and selectivity. Correlations were attempted to the catalyst composition with their electronic and catalytic properties. Probable mechanism for the dehydration process is proposed in terms of surface active sites.


2009 ◽  
Vol 24 (08n09) ◽  
pp. 1721-1742 ◽  
Author(s):  
V. M. MOSTEPANENKO ◽  
R. S. DECCA ◽  
E. FISCHBACH ◽  
B. GEYER ◽  
G. L. KLIMCHITSKAYA ◽  
...  

The Lifshitz theory of dispersion forces leads to thermodynamic and experimental inconsistencies when the role of drifting charge carriers is included in the model of the dielectric response. Recently modified reflection coefficients were suggested that take into account screening effects and diffusion currents. We demonstrate that this theoretical approach leads to a violation of the third law of thermodynamics (Nernst's heat theorem) for a wide class of materials and is excluded by the data from two recent experiments. The physical reason for its failure is explained by the violation of thermal equilibrium, which is the fundamental applicability condition of the Lifshitz theory, in the presence of drift and diffusion currents.


2007 ◽  
Vol 60 (7) ◽  
pp. 457 ◽  
Author(s):  
Joel van Embden ◽  
Jacek Jasieniak ◽  
Daniel E. Gómez ◽  
Paul Mulvaney ◽  
Michael Giersig

Passivation of CdSe semiconductor nanocrystals can be achieved by overcoating the particles with a homogeneous shell of a second semiconductor. Shell layers are grown in monolayer steps to ensure homogeneous growth of the shell. The relative band edges of the two materials determine the photoreactiveity of the resultant core-shell nanocrystals. The critical role of ligands in minimizing nucleation of the shell material during the growth of the passivating layer is emphasized. The delocalization of charge carriers into the shell layers can be followed spectroscopically during the growth processes. The relative spectral shifts are directly correlated to the relative energies of the band edges.


2021 ◽  
Author(s):  
Katharina Helmbrecht ◽  
Holger Euchner ◽  
Axel Gross

While the Mo6S8 chevrel phase is frequently used as cathode material in Mg--ion batteries, theoretical studies on this material are comparatively scarce. The particular structure of the Mo6S8 phase, with rather loosely connected cluster entities, points to the important role of dispersion forces in this material. However, so far this aspect has been completely neglected in the discussion of Mo6S8 as cathode material for mono- and multivalent-ion batteries. In this work we therefore have studied the impact of dispersion forces on stability and kinetics of Mo6S8 intercalation compounds. For this purpose, a series of charge carriers (Li, Na, K, Mg, Ca, Zn, Al) has been investigated. Interestingly, dispersion forces are observed to only slightly affect the lattice spacing of the chevrel phase, nevertheless having a significant impact on insertion voltage and in particular on the charge carrier mobility in the material. Moreover, upon varying the charge carriers in the chevrel phase, their diffusion barriers are observed to scale linearly with the ion size, almost independent of the charge of the considered ions. This indicates a rather unique and geometry dominated diffusion mechanism in the chevrel phase. The consequences of these findings for the ion mobility in the chevrel phase will be carefully discussed.


2020 ◽  
Vol 135 (10) ◽  
Author(s):  
Ying Zhang ◽  
Yang Liu ◽  
Hang Zhou ◽  
Ping Yang ◽  
Jie Zhao ◽  
...  

1970 ◽  
Vol 48 (24) ◽  
pp. 2930-2936 ◽  
Author(s):  
F. T. Hedgcock ◽  
T. W. Raudorf

Electron spin resonance (ESR) measurements have been made on a phosphorus-doped silicon specimen (n = 1.38 × 1019/cc) in the liquid helium temperature range. A single line with a g factor of approximately 2 was observed for resonant magnetic fields of 540, 3230, and 12 590 G at 1517, 9010, and 35 200 MHz respectively. The experimentally determined magnetization is compared with the magnetizations expected from the following sources: (a) un-ionized charge carriers or local magnetic moments obeying a Curie law, (b) mobile carriers experiencing an exchange interaction with local magnetic moments, and (c) mobile charge carriers showing only Pauli paramagnetism. The magnetization derived from the ESR data exhibits a linear dependence with magnetic field and no temperature dependence. This is consistent with the Pauli paramagnetism expected for mobile charge carriers in the absence of any interaction with local moments.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 736
Author(s):  
Janne Kotilahti ◽  
Pablo Burset ◽  
Michael Moskalets ◽  
Christian Flindt

The development of dynamic single-electron sources has made it possible to observe and manipulate the quantum properties of individual charge carriers in mesoscopic circuits. Here, we investigate multi-particle effects in an electronic Mach–Zehnder interferometer driven by a series of voltage pulses. To this end, we employ a Floquet scattering formalism to evaluate the interference current and the visibility in the outputs of the interferometer. An injected multi-particle state can be described by its first-order correlation function, which we decompose into a sum of elementary correlation functions that each represent a single particle. Each particle in the pulse contributes independently to the interference current, while the visibility (given by the maximal interference current) exhibits a Fraunhofer-like diffraction pattern caused by the multi-particle interference between different particles in the pulse. For a sequence of multi-particle pulses, the visibility resembles the diffraction pattern from a grid, with the role of the grid and the spacing between the slits being played by the pulses and the time delay between them. Our findings may be observed in future experiments by injecting multi-particle pulses into a Mach–Zehnder interferometer.


Sign in / Sign up

Export Citation Format

Share Document