scholarly journals Mesh Quality Preserving Shape Optimization Using Nonlinear Extension Operators

2021 ◽  
Vol 189 (1) ◽  
pp. 291-316
Author(s):  
Sofiya Onyshkevych ◽  
Martin Siebenborn

AbstractIn this article, we propose a shape optimization algorithm which is able to handle large deformations while maintaining a high level of mesh quality. Based on the method of mappings, we introduce a nonlinear extension operator, which links a boundary control to domain deformations, ensuring admissibility of resulting shapes. The major focus is on comparisons between well-established approaches involving linear-elliptic operators for the extension and the effect of additional nonlinear advection on the set of reachable shapes. It is moreover discussed how the computational complexity of the proposed algorithm can be reduced. The benefit of the nonlinearity in the extension operator is substantiated by several numerical test cases of stationary, incompressible Navier–Stokes flows in 2d and 3d.

2012 ◽  
Vol 594-597 ◽  
pp. 2529-2536
Author(s):  
Hua Kun Wang ◽  
Guo Liang Yu

Mesh moving scheme is an important issue in many fluid-structure interaction problems. In this paper a new mesh motion technique is presented for the effective treatment of moving mesh. The entire deformation is imposed at each time step and the motion of the internal nodes is governed by a modified Laplace equation. Finite element method is adopted to solve the Laplace equation with elemental Jacobian-based stiffening technique. Nodal coordinates are updated by using the total nodal displacements and initial coordinates. The proposed scheme has been applied to several 2D and 3D test cases involving various mesh types with the mesh quality evaluated by an index called elemental aspect ratio. With these applications, it is demonstrated that the present method still preserves good mesh quality for long-term and large amplitude oscillations or deformations.


2021 ◽  
pp. 146808742199863
Author(s):  
Aishvarya Kumar ◽  
Ali Ghobadian ◽  
Jamshid Nouri

This study assesses the predictive capability of the ZGB (Zwart-Gerber-Belamri) cavitation model with the RANS (Reynolds Averaged Navier-Stokes), the realizable k-epsilon turbulence model, and compressibility of gas/liquid models for cavitation simulation in a multi-hole fuel injector at different cavitation numbers (CN) for diesel and biodiesel fuels. The prediction results were assessed quantitatively by comparison of predicted velocity profiles with those of measured LDV (Laser Doppler Velocimetry) data. Subsequently, predictions were assessed qualitatively by visual comparison of the predicted void fraction with experimental CCD (Charged Couple Device) recorded images. Both comparisons showed that the model could predict fluid behavior in such a condition with a high level of confidence. Additionally, flow field analysis of numerical results showed the formation of vortices in the injector sac volume. The analysis showed two main types of vortex structures formed. The first kind appeared connecting two adjacent holes and is known as “hole-to-hole” connecting vortices. The second type structure appeared as double “counter-rotating” vortices emerging from the needle wall and entering the injector hole facing it. The use of RANS proved to save significant computational cost and time in predicting the cavitating flow with good accuracy.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 344
Author(s):  
Le Thi Thu Hien ◽  
Nguyen Van Chien

The aim of this paper was to investigate the ability of some 2D and 3D numerical models to simulate flood waves in the presence of an isolated building or building array in an inundated area. Firstly, the proposed 2D numerical model was based on the finite-volume method (FVM) to solve 2D shallow-water equations (2D-SWEs) on structured mesh. The flux-difference splitting method (FDS) was utilized to obtain an exact mass balance while the Roe scheme was invoked to approximate Riemann problems. Secondly, the 3D commercially available CFD software package was selected, which contained a Flow 3D model with two turbulent models: Reynolds-averaged Navier-Stokes (RANs) with a renormalized group (RNG) and a large-eddy simulation (LES). The numerical results of an impact force on an obstruction due to a dam-break flow showed that a 3D solution was much better than a 2D one. By comparing the 3D numerical force results of an impact force acting on building arrays with the existence experimental data, the influence of velocity-induced force on a dynamic force was quantified by a function of the Froude number and the water depth of the incident wave. Furthermore, we investigated the effect of the initial water stage and dam-break width on the 3D-computed results of the peak value of force intensity.


2021 ◽  
Vol 153 (A2) ◽  
Author(s):  
Q Yang ◽  
W Qiu

Slamming forces on 2D and 3D bodies have been computed based on a CIP method. The highly nonlinear water entry problem governed by the Navier-Stokes equations was solved by a CIP based finite difference method on a fixed Cartesian grid. In the computation, a compact upwind scheme was employed for the advection calculations and a pressure-based algorithm was applied to treat the multiple phases. The free surface and the body boundaries were captured using density functions. For the pressure calculation, a Poisson-type equation was solved at each time step by the conjugate gradient iterative method. Validation studies were carried out for 2D wedges with various deadrise angles ranging from 0 to 60 degrees at constant vertical velocity. In the cases of wedges with small deadrise angles, the compressibility of air between the bottom of the wedge and the free surface was modelled. Studies were also extended to 3D bodies, such as a sphere, a cylinder and a catamaran, entering calm water. Computed pressures, free surface elevations and hydrodynamic forces were compared with experimental data and the numerical solutions by other methods.


Author(s):  
R. Kamali ◽  
S. A. Shekoohi

Two methods for solving coupled particle dynamics and flow field equations simultaneously by considering fluid-particle interactions to simulate two-phase flow are presented and compared. In many conditions, such as magnetic micro mixers and shooting high velocity particles in fluid, the fluid-particle interactions can not be neglected. In these cases it is necessary to consider fluid-particle interactions and solve the related coupled equations simultaneously. To solve these equations, suitable algorithms should be used to improve convergence speed and solution accuracy. In this paper two algorithms for solving coupled incompressible Navier-Stokes and particle dynamics equations are proposed and their efficiencies are compared by using them in a computer program. The main criterion that is used for comparison is the time they need to converge for a specific accuracy. In the first algorithm the particle dynamics and flow field equations are solved simultaneously but separately. In the second algorithm in each iteration for solving flow field equations, the particle dynamics equation is also solved. Results for some test cases are presented and compared. According to the results the second algorithm is faster than the first one especially when there is a strong coupling between phases.


2018 ◽  
Author(s):  
Youngmyung Choi ◽  
Benjamin Bouscasse ◽  
Sopheak Seng ◽  
Guillaume Ducrozet ◽  
Lionel Gentaz ◽  
...  

The capability of wave generation and absorption in a viscous flow solver becomes important for achieving realistic simulations in naval and offshore fields. This study presents an efficient generation of nonlinear wave fields in the viscous flow solver by using a nonlinear potential solver called higher-order spectral method (HOS). The advantages of using a fully nonlinear potential solver for the generation of irregular waves are discussed. In particular, it is shown that the proposed method allows the CFD simulation to start at the time and over the space of interest, retrieved from the potential flow solution. The viscous flow solver is based on the open source library OpenFOAM. The potential solvers used to generate waves are the open source solvers HOS-Ocean and HOS-NWT (Numerical Wave Tank). Several simulation parameters in the CFD solver are investigated in the present study. A HOS wrapper program is newly developed to regenerate wave fields in the viscous flow solver. The wrapper program is validated with OpenFOAM for 2D and 3D regular and irregular waves using relaxation zones. Finally, the extreme waves corresponding to the 1000 year return period condition in the Gulf of Mexico are simulated with the viscous flow solver and the wave elevation is compared with the experiments.


2013 ◽  
Vol 136 (5) ◽  
Author(s):  
Ugochukwu R. Oriji ◽  
Paul G. Tucker

The one equation Spalart–Allmaras (SA) turbulence model in an extended modular form is presented. It is employed for the prediction of crosswind flow around the lip of a 90 deg sector of an intake with and without surface roughness. The flow features around the lip are complex. There exists a region of high streamline curvature. For this, the Richardson number would suggest complete degeneration to laminar flow. Also, there are regions of high favorable pressure gradient (FPG) sufficient to laminarize a turbulent boundary layer (BL). This is all terminated by a shock and followed by a laminar separation. Under these severe conditions, the SA model is insensitive to capturing the effects of laminarization and the reenergization of eddy viscosity. The latter promotes the momentum transfer and correct reattachment prior to the fan face. Through distinct modules, the SA model has been modified to account for the effect of laminarization and separation induced transition. The modules have been implemented in the Rolls-Royce HYDRA computational fluid dynamic (CFD) solver. They have been validated over a number of experimental test cases involving laminarization and also surface roughness. The validated modules are finally applied in unsteady Reynolds-averaged Navier–Stokes (URANS) mode to flow around an engine intake and comparisons made with measurements. Encouraging agreement is found and hence advances made towards a more reliable intake design framework.


1998 ◽  
Vol 120 (2) ◽  
pp. 205-214 ◽  
Author(s):  
C. M. Rhie ◽  
A. J. Gleixner ◽  
D. A. Spear ◽  
C. J. Fischberg ◽  
R. M. Zacharias

A multistage compressor performance analysis method based on the three-dimensional Reynolds-averaged Navier-Stokes equations is presented in this paper. This method is an average passage approach where deterministic stresses are used to ensure continuous physical properties across interface planes. The average unsteady effects due to neighboring blades and/or vanes are approximated using deterministic stresses along with the application of bodyforces. Bodyforces are used to account for the “potential” interaction between closely coupled (staged) rows. Deterministic stresses account for the “average” wake blockage and mixing effects both axially and radially. The attempt here is to implement an approximate technique for incorporating periodic unsteady flow physics that provides for a robust multistage design procedure incorporating reasonable computational efficiency. The present paper gives the theoretical development of the stress/bodyforce models incorporated in the code, and demonstrates the usefulness of these models in practical compressor applications. Compressor performance prediction capability is then established through a rigorous code/model validation effort using the power of networked workstations. The numerical results are compared with experimental data in terms of one-dimensional performance parameters such as total pressure ratio and circumferentially averaged radial profiles deemed critical to compressor design. This methodology allows the designer to design from hub to tip with a high level of confidence in the procedure.


2014 ◽  
Vol 24 (08) ◽  
pp. 1495-1539 ◽  
Author(s):  
Francesco Bassi ◽  
Lorenzo Botti ◽  
Alessandro Colombo

In this work we consider agglomeration-based physical frame discontinuous Galerkin (dG) discretization as an effective way to increase the flexibility of high-order finite element methods. The mesh free concept is pursued in the following (broad) sense: the computational domain is still discretized using a mesh but the computational grid should not be a constraint for the finite element discretization. In particular the discrete space choice, its convergence properties, and even the complexity of solving the global system of equations resulting from the dG discretization should not be influenced by the grid choice. Physical frame dG discretization allows to obtain mesh-independent h-convergence rates. Thanks to mesh agglomeration, high-order accurate discretizations can be performed on arbitrarily coarse grids, without resorting to very high-order approximations of domain boundaries. Agglomeration-based h-multigrid techniques are the obvious choice to obtain fast and grid-independent solvers. These features (attractive for any mesh free discretization) are demonstrated in practice with numerical test cases.


Sign in / Sign up

Export Citation Format

Share Document