On Ellipticity of Hyperelastic Models Restored by Experimental Data

Author(s):  
V. Yu. Salamatova ◽  
Yu. V. Vasilevskii
Author(s):  
Cyprian Suchocki ◽  
Stanisław Jemioło

AbstractIn this work a number of selected, isotropic, invariant-based hyperelastic models are analyzed. The considered constitutive relations of hyperelasticity include the model by Gent (G) and its extension, the so-called generalized Gent model (GG), the exponential-power law model (Exp-PL) and the power law model (PL). The material parameters of the models under study have been identified for eight different experimental data sets. As it has been demonstrated, the much celebrated Gent’s model does not always allow to obtain an acceptable quality of the experimental data approximation. Furthermore, it is observed that the best curve fitting quality is usually achieved when the experimentally derived conditions that were proposed by Rivlin and Saunders are fulfilled. However, it is shown that the conditions by Rivlin and Saunders are in a contradiction with the mathematical requirements of stored energy polyconvexity. A polyconvex stored energy function is assumed in order to ensure the existence of solutions to a properly defined boundary value problem and to avoid non-physical material response. It is found that in the case of the analyzed hyperelastic models the application of polyconvexity conditions leads to only a slight decrease in the curve fitting quality. When the energy polyconvexity is assumed, the best experimental data approximation is usually obtained for the PL model. Among the non-polyconvex hyperelastic models, the best curve fitting results are most frequently achieved for the GG model. However, it is shown that both the G and the GG models are problematic due to the presence of the locking effect.


Author(s):  
Mathieu Nierenberger ◽  
Yves Rémond ◽  
Saïd Ahzi

Medical surgery is currently rapidly improving and requires modeling faithfully the mechanical behavior of soft tissues. Various models exist in literature; some of them created for the study of biological materials, and others coming from the field of rubber mechanics. Indeed biological tissues show a mechanical behavior close to the one of rubbers. But while building a model, one has to keep in mind that its parameters should be loading independent and that the model should be able to predict the behavior under complex loading conditions. In addition, keeping physical parameters seems interesting since it allows a bottom up approach taking into account the microstructure of the material. In this study, the authors consider different existing hyperelastic models based on strain energy functions and identify their coefficients successively on single loading stress-stretch curves. The experimental data used, come from a paper by Zemanek dated 2009 and concerning uniaxial, equibiaxial and plane tension tests on porcine arterial walls taken in identical experimental conditions. To achieve identification, the strain energy function of each model is derived differently to provide an expression of the Cauchy stress associated to each loading case. Firstly the parameters of each model are identified on the uniaxial tension curve using a least squares method. Then, keeping the obtained parameters, predictions are made for the two other loading cases (equibiaxial and plane tension) using the associated expressions of stresses. A comparison of these predictions with experimental data is done and allows evaluating the predictive capabilities of each model for the different loading cases. A similar approach is used after swapping the loading types. Since the predictive capabilities of the models are really dependent on the loading chosen to determine their parameters, another type of identification procedure is set up. It consists in adding the residues over the three loading cases during identification. This alternative identification method allows a better agreement between each model and the various types of experiments. This study evaluated the ability of some classical hyperelastic models to be used for a predictive scope after being identified on a specific loading type. Besides it brought to light some existing models which can describe at best the mechanical behavior of biological tissues submitted to various loadings.


2006 ◽  
Vol 79 (5) ◽  
pp. 835-858 ◽  
Author(s):  
G. Marckmann ◽  
E. Verron

Abstract The present paper proposes a thorough comparison of twenty hyperelastic models for rubber-like materials. The ability of these models to reproduce different types of loading conditions is analyzed thanks to two classical sets of experimental data. Both material parameters and the stretch range of validity of each model are determined by an efficient fitting procedure. Then, a ranking of these twenty models is established, highlighting new efficient constitutive equations that could advantageously replace well-known models, which are widely used by engineers for finite element simulation of rubber parts.


2017 ◽  
Vol 63 (3) ◽  
pp. 504-515
Author(s):  
V Yu Salamatova ◽  
Yu V Vasilevskii

The condition of ellipticity of the equilibrium equation plays an important role for correct description of mechanical behavior of materials and is a necessary condition for new defining relationships. Earlier, new deformation measures were proposed to vanish correlations between the terms, that dramatically simplifies restoration of defining relationships from experimental data. One of these new deformation measures is based on the QR-expansion of deformation gradient. In this paper, we study the strong ellipticity condition for hyperelastic material using the QR-expansion of deformation gradient.


2004 ◽  
Vol 34 (6) ◽  
pp. 484-502 ◽  
Author(s):  
R. W. Ogden ◽  
G. Saccomandi ◽  
I. Sgura

2013 ◽  
Vol 275-277 ◽  
pp. 28-32 ◽  
Author(s):  
Ming Li ◽  
Xiao Ling Hu ◽  
Wen Bo Luo ◽  
You Jian Huang ◽  
Ji Ling Bu

Mooney-Rivlin model and Ogden model are frequently used by engineers for finite element analysis of rubber material. Before simulation, simple, biaxial and planar extension tests are always done to get the model parameters. In this paper, we compare these two hyperelastic models with experimental data produced under simple, biaxial extension and planar extension loading conditions. The ability of the two models to reproduce different deformation modes is analyzed. Both material parameters and the stretch range of validity of each model are determined.


2015 ◽  
Vol 12 (110) ◽  
pp. 20150486 ◽  
Author(s):  
L. Angela Mihai ◽  
LiKang Chin ◽  
Paul A. Janmey ◽  
Alain Goriely

In some soft biological structures such as brain and fat tissues, strong experimental evidence suggests that the shear modulus increases significantly under increasing compressive strain, but not under tensile strain, whereas the apparent Young's elastic modulus increases or remains almost constant when compressive strain increases. These tissues also exhibit a predominantly isotropic, incompressible behaviour. Our aim is to capture these seemingly contradictory mechanical behaviours, both qualitatively and quantitatively, within the framework of finite elasticity, by modelling a soft tissue as a homogeneous, isotropic, incompressible, hyperelastic material and comparing our results with available experimental data. Our analysis reveals that the Fung and Gent models, which are typically used to model soft tissues, are inadequate for the modelling of brain or fat under combined stretch and shear, and so are the classical neo-Hookean and Mooney–Rivlin models used for elastomers. However, a subclass of Ogden hyperelastic models are found to be in excellent agreement with the experiments. Our findings provide explicit models suitable for integration in large-scale finite-element computations.


Author(s):  
A. Gómez ◽  
P. Schabes-Retchkiman ◽  
M. José-Yacamán ◽  
T. Ocaña

The splitting effect that is observed in microdiffraction pat-terns of small metallic particles in the size range 50-500 Å can be understood using the dynamical theory of electron diffraction for the case of a crystal containing a finite wedge. For the experimental data we refer to part I of this work in these proceedings.


Author(s):  
K.B. Reuter ◽  
D.B. Williams ◽  
J.I. Goldstein

In the Fe-Ni system, although ordered FeNi and ordered Ni3Fe are experimentally well established, direct evidence for ordered Fe3Ni is unconvincing. Little experimental data for Fe3Ni exists because diffusion is sluggish at temperatures below 400°C and because alloys containing less than 29 wt% Ni undergo a martensitic transformation at room temperature. Fe-Ni phases in iron meteorites were examined in this study because iron meteorites have cooled at slow rates of about 10°C/106 years, allowing phase transformations below 400°C to occur. One low temperature transformation product, called clear taenite 2 (CT2), was of particular interest because it contains less than 30 wtZ Ni and is not martensitic. Because CT2 is only a few microns in size, the structure and Ni content were determined through electron diffraction and x-ray microanalysis. A Philips EM400T operated at 120 kV, equipped with a Tracor Northern 2000 multichannel analyzer, was used.


Author(s):  
C. C. Ahn ◽  
D. H. Pearson ◽  
P. Rez ◽  
B. Fultz

Previous experimental measurements of the total white line intensities from L2,3 energy loss spectra of 3d transition metals reported a linear dependence of the white line intensity on 3d occupancy. These results are inconsistent, however, with behavior inferred from relativistic one electron Dirac-Fock calculations, which show an initial increase followed by a decrease of total white line intensity across the 3d series. This inconsistency with experimental data is especially puzzling in light of work by Thole, et al., which successfully calculates x-ray absorption spectra of the lanthanide M4,5 white lines by employing a less rigorous Hartree-Fock calculation with relativistic corrections based on the work of Cowan. When restricted to transitions allowed by dipole selection rules, the calculated spectra of the lanthanide M4,5 white lines show a decreasing intensity as a function of Z that was consistent with the available experimental data.Here we report the results of Dirac-Fock calculations of the L2,3 white lines of the 3d and 4d elements, and compare the results to the experimental work of Pearson et al. In a previous study, similar calculations helped to account for the non-statistical behavior of L3/L2 ratios of the 3d metals. We assumed that all metals had a single 4s electron. Because these calculations provide absolute transition probabilities, to compare the calculated white line intensities to the experimental data, we normalized the calculated intensities to the intensity of the continuum above the L3 edges. The continuum intensity was obtained by Hartree-Slater calculations, and the normalization factor for the white line intensities was the integrated intensity in an energy window of fixed width and position above the L3 edge of each element.


Sign in / Sign up

Export Citation Format

Share Document