Optimization of process parameters and its effect on particle size and morphology of ZnO nanoparticle synthesized by sol–gel method

2015 ◽  
Vol 77 (1) ◽  
pp. 48-56 ◽  
Author(s):  
Debasish Dutta
2012 ◽  
Vol 535-537 ◽  
pp. 787-790
Author(s):  
Shu Lan Guo ◽  
Min Wang ◽  
Su Hua Lv ◽  
Jia Li ◽  
Xian Chang Du

The properties of YSZ-Ni-Cr cermet fabricated by Sol-Gel Method(YSZ-Ni-Cr powder was synthesized by coprecipitation method at 850°C for 2 h and was processed into YSZ-Ni-Cr cermet by hot-press sintering at 1350°C for 1 h)was explored. The identification of phases was carried out using a X-ray diffractometer (XRD). The particle size and morphology was determined by electron microscopys(SEM/TEM) The conductivity had a tendency to decrease with increasing temperature. This behavior can be accounted for that there are two conduction paths through the cermet, an electronic path through the (Ni,Cr) metal phase and an ionic path through the ZrO2-Y2O3 phase.


2013 ◽  
Vol 756 ◽  
pp. 91-98 ◽  
Author(s):  
Ftema W. Aldbea ◽  
Noor Bahyah Ibrahim ◽  
Mustafa Hj. Abdullah

Terbium –substituted yttrium iron garnet (Tb1.5Y1.5Fe5O12) films nanoparticles were successfully prepared by a sol-gel method. The films were deposited on the quartz substrate using spin coating technique. To study effect of annealing temperature, the annealing process was executed at 700, 800 and 900 °C in air for 2 hours. The X-ray diffraction (XRD) proved that the pure phase of garnet structure was detected for the film annealed at 900 °C. The lattice parameter increased with the increment of annealing temperature and the highest value of 12.35 Å was obtained at 900 °C. Field Emission Scanning Electron Microscope (FE-SEM) results showed that the particle size increased from 43nm to 56nm as annealing temperature increased from 700 to 900°C. The film’s thickness also affected by increasing of annealing temperature and become thin at 900 °C due to densification process occurred at high annealing temperature. The elemental compositions of the Tb1.5Y1.5Fe5O12 film were detected using an Energy Dispersive X-raySpectroscopy (EDX). Magnetic properties at room temperature were measured using a Vibrating Sample Magnetometer (VSM).The saturation magnetization Ms increased with the annealingtemperature and showed a high value of 104emu/cm3, but the coercivity Hc of the film was decreased due to the increment of the particle size. Normal 0 21 false false false MS X-NONE X-NONE MicrosoftInternetExplorer4 Terbium –substituted yttrium iron garnet (Tb1.5Y1.5Fe5O12) films nanoparticles were successfully prepared by a sol-gel method. The films were deposited on the quartz substrate using spin coating technique. To study effect of annealing temperature, the annealing process was executed at 700, 800 and 900°C in air for 2 hours. The X-ray diffraction (XRD) proved that the pure phase of garnet structure was detected for the film annealed at 900 °C. The lattice parameter increased with the increment of annealing temperature and the highest value of 12.35 Å was obtained at 900 °C. Field Emission Scanning Electron Microscope (FE-SEM) results showed that the particle size increased from 43nm to 56nm as annealing temperature increased from 700 to 900 °C. The film’s thickness also affected by increasing of annealing temperature and become thin at 900 °C due to densification process occurred at high annealing temperature. The elemental compositions of the Tb1.5Y1.5Fe5O12 film were detected using an Energy Dispersive X-ray Spectroscopy (EDX). Magnetic properties at room temperature were measured using a Vibrating Sample Magnetometer (VSM).The saturation magnetization Ms increased with the annealing temperature and showed a high value of 104emu/cm3, but the coercivity Hc of the film was decreased due to the increment of the particle size. st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}


2011 ◽  
Vol 10 (2) ◽  
pp. 25
Author(s):  
Anirut Leksomboon ◽  
Bunjerd Jongsomjit

In this present study, the spherical silica support was synthesized from tetraethyloxysilane (TEOS), water, sodium hydroxide, ethylene glycol and n-dodecyltrimethyl ammonium bromide (C12TMABr). The particle size was controlled by variation of the ethylene glycol co-solvent weight ratio of a sol-gel method preparation in the range of 0.10 to 0.50. In addition, the particle size apparently increases with high weight ratio of co-solvent, but the particle size distribution was broader. The standard deviation of particle diameter is large when the co-solvent weight ratio is more than 0.35 and less than 0.15. However, the specific surface area was similar for all weight ratios ranging from 1000 to 1300 m2/g. The synthesized silica was spherical and has high specific surface area. The cobalt was impregnated onto the obtained silica to produce the cobalt catalyst used for CO2 hydrogenation.</


2013 ◽  
Vol 712-715 ◽  
pp. 257-261
Author(s):  
Yin Lin Wu ◽  
Qing Hui Wang ◽  
Ling Wang ◽  
Hai Yan Zhao

The La0.75Sr0.25Cr0.5Mn0.5O3-δnanometer powders were prepared by citric acid sol-gel method.The samples were characterized by DTA, FT-IR, XRD, TEM techniques. The preparation process, morphology of synthesized powders, the best heat-treatment temperature and the electrochemical performance had been studied. The results show that the spherical nanometer powders can be obtained and the best heat-treatment temperature is 800°C. The particle size is about 30nm and Ea is 0.071 eV.


2019 ◽  
Vol 7 (17) ◽  
pp. 4981-4987 ◽  
Author(s):  
Ruiyu Bao ◽  
Chen Chen ◽  
Jianxin Xia ◽  
Huiying Chen ◽  
Hua Li

The surface morphology and particle size of materials can be controlled using DEP technology.


2014 ◽  
Vol 91 ◽  
pp. 19-23
Author(s):  
Plamen Pashev ◽  
Rositsa Raykova ◽  
Yancho Hristov ◽  
Bogdan Bogdanov

The study presented deal with preparation of batches of the system Y-Ba-Cu-O using sol-gel method and citric acid as precursor. Batches with particle size of 100 nm containing each of the phases Y123 and Y211 were prepared. The stoichiometric amounts of Y, Ba and Cu oxides were dissolved in 65% HNO3 until clear blue solution was observed under heating to 80 ̊С. The nitrate solutions obtained were neutralized to pH = 6 with 25% solution of NH3 (p.a.), then С6Н8О7 was added as the gels obtained were thermally treated. The transformation processes taking place under change of temperature were studied by IR, XRD, DTA and SEM.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Min Zhang ◽  
Zhenfa Zi ◽  
Qiangchun Liu ◽  
Peng Zhang ◽  
Xianwu Tang ◽  
...  

Ni0.5Zn0.5Fe2O4particles with different particle sizes have been synthesized by sol-gel method. X-ray diffraction results show that all the samples are pure cubic spinel structure with their sizes ranging from 9 to 96 nm. The lattice constant significantly decreases with further increasing annealing temperature. The magnetic measurements show superparamagnetic nature below the particle size of 30 nm, while others show ferrimagnetic nature above the corresponding blocking temperature. The blocking temperature increases with the increase in particle size, which can be explained by Stoner-Wohlfarth theory. The saturation magnetization increases as the particle size increases, which can be explained by the cation redistribution on tetrahedral A and octahedral B sites and the domain wall motion. The variation of coercivity as a function of particle size is based on the domain structure.


2008 ◽  
Vol 19 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Hiromasa Okada ◽  
Junichi Ida ◽  
Tomoko Yoshikawa ◽  
Tatsushi Matsuyama ◽  
Hideo Yamamoto

2019 ◽  
Vol 2 (98) ◽  
pp. 81-84
Author(s):  
K. Szmajnta ◽  
M. Szindler

Purpose: The main purpose of this publication is to bring closer method of synthesis and examining basic properties of TiO2, ZnO and NiO nanoparticles (NPs), and investigate their possible biomedical application. Design/methodology/approach: Nanopowders were made with sol-gel method. Surface morphology studies of the obtained materials were made using Zeiss's Supra 35 scanning electron microscope and the structure using S/TEM TITAN 80-300 transmission electron microscope. In order to confirm the chemical composition of observed nanopowders, qualitative tests were performed by means of spectroscopy of scattered X -ray energy using the Energy Dispersive Spectrometer (EDS). The DLS (Dynamic Light Scattering) method was used to analyse the particle size distribution using the AntonPaar Litesizer 500 nanoparticle size analyser. Changes in particle size distribution at elevated temperatures were also observed. The TiO2, ZnO and NiO NPs with spherical shape were successfully produced by sol-gel method. Findings: The diameter of the as prepared nanoparticles does not exceed 25 nm which is confirmed by the TEM analysis. The highest proportion among the agglomerates of the nanoparticles has been shown to show those with a diameter of 80 to 125 nm. The qualitative analysis of EDS confirmed the chemical composition of the material. Practical implications: Nanoparticles (NPs) has been receiving an incrementally increasing interest within biomedical fields researchers. Nanoparticles properties (physical, chemical, mechanical, optical, electrical, magnetic, etc.) are different from the properties of their counterparts with a larger particle size. Originality/value: The nanoparticles were prepared using sol-gel method which allows the particle size to be controlled in a simple way.


Sign in / Sign up

Export Citation Format

Share Document