scholarly journals Size Effects on Magnetic Properties ofNi0.5Zn0.5Fe2O4Prepared by Sol-Gel Method

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Min Zhang ◽  
Zhenfa Zi ◽  
Qiangchun Liu ◽  
Peng Zhang ◽  
Xianwu Tang ◽  
...  

Ni0.5Zn0.5Fe2O4particles with different particle sizes have been synthesized by sol-gel method. X-ray diffraction results show that all the samples are pure cubic spinel structure with their sizes ranging from 9 to 96 nm. The lattice constant significantly decreases with further increasing annealing temperature. The magnetic measurements show superparamagnetic nature below the particle size of 30 nm, while others show ferrimagnetic nature above the corresponding blocking temperature. The blocking temperature increases with the increase in particle size, which can be explained by Stoner-Wohlfarth theory. The saturation magnetization increases as the particle size increases, which can be explained by the cation redistribution on tetrahedral A and octahedral B sites and the domain wall motion. The variation of coercivity as a function of particle size is based on the domain structure.

NANO ◽  
2020 ◽  
Vol 15 (02) ◽  
pp. 2050020 ◽  
Author(s):  
E. M. M. Ibrahim ◽  
G. Farghal ◽  
Mai M. Khalaf ◽  
Hany M. Abd El-Lateef

In this work, Bi[Formula: see text]SmxFe4O9 ([Formula: see text], 0.02, 0.06, 0.08, 0.1) nanoplates with an average thickness of 62–125[Formula: see text]nm were synthesized using a sol–gel method. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The magnetic measurements show that the nanoplates have weak ferromagnetic ordering. The saturation magnetization of the nanoplates increases as the Sm content increases. The DC electric transport properties were studied by measuring the temperature dependence of the resistivity in the temperature range 300–680[Formula: see text]K. The materials show typical semiconductor features, and the conduction mechanisms are governed by electron and small polaron hopping in the low and high temperature measurement ranges, respectively. The Sm doping results in a significant enhancement in the electrical conductivity of the Bi2Fe4O9 nanoplates.


2018 ◽  
Vol 204 ◽  
pp. 05005 ◽  
Author(s):  
Dwita Suastiyanti ◽  
Maykel T.E. Manawan ◽  
Marlin Wijaya

The nanomultiferroic material which is synthesized in this research used sol-gel method. The research used weight ratio of BaTiO3: BiFeO3 of 2: 1. Gel formed after heating at 80-90°C was calcined at 350°C for 4 hours and then sintered at 700,750 and 800°C for 2, 4 and 6 hours respectively. Powder produced after sintering was characterized by X-Ray Diffraction (XRD) test using XRD Phillips PW 1835 type, 20°-100° diffraction angle and CuKα, electric polarization properties test and particle size measurement using Particle Size Analyzer of Beckman Coulter DelsaTM Nano instrument. From the characterization results, it is obtained that the dominant phase is Barium Bismuth Iron (III) Oxide (BaBiFe2O5). Electrical polarization properties such as remanent, coersivity and saturation reach maximum value at sinter temperature of 750° C and sinter time of 6 hours. This result is supported by the smallest particle size of powder (54-57 nm) and also supported by the largest number of dominant phase (98.79%) at same condition.


2016 ◽  
Vol 680 ◽  
pp. 515-519 ◽  
Author(s):  
Xue Wen Wang ◽  
Chan Liu ◽  
Cheng Xing Wang

This paper fabricates rare earth(RE) La, Ce and Pr doped GaN film by sol-gel method and uses X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL) to characterize and analyze their dimensions, morphology and optical properties. The results show that doped GaN film is hexagonal wurtzite structure and has good crystallinity. With the increasing of the Ce doping amounts, the particle size of GaN increases gradually. While augmenting the doping amounts of La or Ce can cause particle size to be smaller. Several RE doped GaN have inhibitory effects on yellow luminescence and generate red emission peaks. The GaN:La don’t appear photoluminescence peak except for the characteristic peak of GaN. Ce doped GaN appear emission peaks with narrow FWHM between 500~600nm. 5% Pr doping enhances the intrinsic excitation and blue band edge luminescence of GaN. Through the analysis, it can be found that La, Ce and Pr doping influence the grain growth and photoluminescence spectrum of GaN film effectively.


2002 ◽  
Vol 57 (3-4) ◽  
pp. 154-158 ◽  
Author(s):  
C. Cannas ◽  
G. Concas ◽  
F. Congiu ◽  
A. Musinu ◽  
G. Piccaluga ◽  
...  

A series of Fe2O3-SiO2 nanocomposites (25 weight % of Fe2O3) has been prepared using a sol-gel method. Samples showing different features were obtained by varying the evaporation conditions acting on the surface / volume ratio of the starting sol. The samples were investigated using Mössbauer spectroscopy at low temperature. The Fe2O3 nanoparticles have been identified as maghemite ( γ-Fe2O3) particles. The samples show a superparamagnetic behavior with a blocking temperature that depends on the average particle size.


2013 ◽  
Vol 756 ◽  
pp. 91-98 ◽  
Author(s):  
Ftema W. Aldbea ◽  
Noor Bahyah Ibrahim ◽  
Mustafa Hj. Abdullah

Terbium –substituted yttrium iron garnet (Tb1.5Y1.5Fe5O12) films nanoparticles were successfully prepared by a sol-gel method. The films were deposited on the quartz substrate using spin coating technique. To study effect of annealing temperature, the annealing process was executed at 700, 800 and 900 °C in air for 2 hours. The X-ray diffraction (XRD) proved that the pure phase of garnet structure was detected for the film annealed at 900 °C. The lattice parameter increased with the increment of annealing temperature and the highest value of 12.35 Å was obtained at 900 °C. Field Emission Scanning Electron Microscope (FE-SEM) results showed that the particle size increased from 43nm to 56nm as annealing temperature increased from 700 to 900°C. The film’s thickness also affected by increasing of annealing temperature and become thin at 900 °C due to densification process occurred at high annealing temperature. The elemental compositions of the Tb1.5Y1.5Fe5O12 film were detected using an Energy Dispersive X-raySpectroscopy (EDX). Magnetic properties at room temperature were measured using a Vibrating Sample Magnetometer (VSM).The saturation magnetization Ms increased with the annealingtemperature and showed a high value of 104emu/cm3, but the coercivity Hc of the film was decreased due to the increment of the particle size. Normal 0 21 false false false MS X-NONE X-NONE MicrosoftInternetExplorer4 Terbium –substituted yttrium iron garnet (Tb1.5Y1.5Fe5O12) films nanoparticles were successfully prepared by a sol-gel method. The films were deposited on the quartz substrate using spin coating technique. To study effect of annealing temperature, the annealing process was executed at 700, 800 and 900°C in air for 2 hours. The X-ray diffraction (XRD) proved that the pure phase of garnet structure was detected for the film annealed at 900 °C. The lattice parameter increased with the increment of annealing temperature and the highest value of 12.35 Å was obtained at 900 °C. Field Emission Scanning Electron Microscope (FE-SEM) results showed that the particle size increased from 43nm to 56nm as annealing temperature increased from 700 to 900 °C. The film’s thickness also affected by increasing of annealing temperature and become thin at 900 °C due to densification process occurred at high annealing temperature. The elemental compositions of the Tb1.5Y1.5Fe5O12 film were detected using an Energy Dispersive X-ray Spectroscopy (EDX). Magnetic properties at room temperature were measured using a Vibrating Sample Magnetometer (VSM).The saturation magnetization Ms increased with the annealing temperature and showed a high value of 104emu/cm3, but the coercivity Hc of the film was decreased due to the increment of the particle size. st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}


2012 ◽  
Vol 545 ◽  
pp. 275-278 ◽  
Author(s):  
Lili Widarti Zainuddin ◽  
Norlida Kamarulzaman

A ceramics sample of LiTaO3 was prepared using a sol-gel method. The sample is annealed at 750 °C for 48 hours. X-ray diffraction analysis indicate the formation of single phase, rhombohedral structure. An ac impedance study was used to analyse the conductivity of LiTaO3 at room temperature and at various temperatures.


2011 ◽  
Vol 268-270 ◽  
pp. 356-359 ◽  
Author(s):  
Wen Song Lin ◽  
C. H. Wen ◽  
Liang He

Mn, Fe doped ZnO powders (Zn0.95-xMnxFe0.05O2, x≤0.05) were synthesized by an ameliorated sol-gel method, using Zn(CH3COO)2, Mn(CH3COO)2and FeCl2as the raw materials, with the addition of vitamin C as a kind of chemical reducer. The resulting powder was subsequently compacted under pressure of 10 MPa at the temperature of 873K in vacuum. The crystal structure and magnetic properties of Zn0.95-xMnxFe0.05O2powder and bulk samples have been investigated by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). X-ray photoelectron spectroscopy (XPS) was used to study chemical valence of manganese, iron and zinc in the samples. The x-ray diffraction (XRD) results showed that Zn0.95-xMnxFe0.05O (x≤0.05) samples were single phase with the ZnO-like wurtzite structure. No secondary phase was found in the XRD spectrum. X-ray photoelectron spectroscopy (XPS) showed that Fe and Mn existed in Zn0.95-xMnxFe0.05O2samples in Fe2+and Mn2+states. The results of VSM experiment proved the room temperature ferromagnetic properties (RTFP) of Mn, Fe co-doped ZnO samples.


2021 ◽  
Vol 93 (3) ◽  
pp. 30401
Author(s):  
Jiaxing Wang ◽  
Hai Yu ◽  
Yong Zhang

SnO2 nanoparticle architectures were successfully synthesized using a sol-gel method and developed for acetone gas detection. The morphology and structure of the particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The SnO2 nanoparticle architectures were configured as high-performance sensors to detect acetone and showed a very fast response time (<1 s), a short recovery time (10 s), good repeatability and high selectivity at a relatively low working temperature. Thus, SnO2 nanoparticles should be promising candidates for designing and fabricating acetone gas sensors with good gas sensing performance. The possible gas sensing mechanism is also presented.


Nanopages ◽  
2019 ◽  
pp. 1-11
Author(s):  
G. M. Taha ◽  
M. N. Rashed ◽  
M. S. El-Sadek ◽  
M. A. Moghazy

Abstract BiFeO3 (BFO) nanopowder was synthesized in a pure form via a sol- gel method based on glycol gel reaction. Effect of drying and preheating temperature on preventing other phases was studied. Many parameters were studied as calcination temperature and time & stirring temperature as well. The prepared powder was characterized by X-Ray Diffraction of powder (XRD) and Transmission Electron Microscope (TEM). High pure BiFeO3 was obtained by preheated process at 400 °C for 0.5 h and calcination at 600 °C for 0.5 h without any impurities compared to dry at110 °C.


2011 ◽  
Vol 399-401 ◽  
pp. 1447-1450
Author(s):  
Zhi Yong Yu ◽  
Han Xing Liu

The layered LiNi1/2Mn1/2O2 cathode materials were synthesized by a sol gel method. The effects of calcination temperature and time on the structural and electrochemical properties of the LiNi1/2Mn1/2O2 were investigated. The prepared samples were characterized by X-ray diffraction (XRD) and electrochemical analysis. The results revealed that the layered LiNi1/2Mn1/2O2 material could be optimal synthesized at temperature of 900°C for 10h. The sample prepared under the above conditions has the highest initial discharge capacity of 151 mAh/g and showed no dramatic capacity fading during 20 cycles between 2.5-4.5V at a current rate of 20mA/g.


Sign in / Sign up

Export Citation Format

Share Document